2021 年真题

选择题

1

设函数 f(x)={ex1x,x0,1,x=0f(x)= \begin{cases} \frac{e^{x}-1}{x}, & x \neq 0, \\ 1, & x=0 \end{cases} ,则 f(x)f(x)x=0x=0 处( )

正确答案:D
【解析】 limx0f(x)=limx0ex1x=limx0xx=1=f(0)\lim _{x \to 0} f(x)=\lim _{x \to 0} \frac{e^{x}-1}{x}=\lim _{x \to 0} \frac{x}{x}=1=f(0) ,故 f(x)f(x)x=0x=0 处连续。又 f(0)=limx0f(x)f(0)x=limx0ex1x1x=limx0ex1xx2=limx01+x+12x2+o(x2)1xx2=12 f'(0)=\lim _{x \to 0} \frac{f(x)-f(0)}{x}=\lim _{x \to 0} \frac{\frac{e^{x}-1}{x}-1}{x}=\lim _{x \to 0} \frac{e^{x}-1-x}{x^{2}}=\lim _{x \to 0} \frac{1+x+\frac{1}{2} x^{2}+o\left(x^{2}\right)-1-x}{x^{2}}=\frac{1}{2} ,故应选(D)。
2

设函数 f(x,y)f(x, y) 可微,且 f(x+1,ex)=x(x+1)2f(x+1, e^{x})=x(x+1)^{2}f(x,x2)=2x2lnxf(x, x^{2})=2 x^{2} \ln x ,则 df(1,1)=df(1,1)= ( )

正确答案:C

【解析】

fx(x,y)=2xlny,fy(x,y)=x2y, f_{x}'(x, y)=2 x \ln y, f_{y}'(x, y)=\frac{x^{2}}{y},

fx(1,1)=0f_{x}'(1,1)=0fy(1,1)=1f_{y}'(1,1)=1 ,得 df(1,1)=dydf(1,1)=dy ,故应选(C)。

3

设函数 f(x)=sinx1+x2f(x)=\frac{\sin x}{1+x^{2}}x=0x=0 处的3次泰勒多项式为 ax+bx2+cx3a x+b x^{2}+c x^{3} ,则( )

正确答案:A

【解析】由题意知, f(x)=sinx1+x2=ax+bx2+cx3+o(x3)f(x)=\frac{\sin x}{1+x^{2}}=a x+b x^{2}+c x^{3}+o(x^{3}) ,故

sinx=(1+x2)(ax+bx2+cx3+o(x3))=ax+bx2+(a+c)x3+o(x3), \begin{aligned} \sin x & =\left(1+x^{2}\right)\left(a x+b x^{2}+c x^{3}+o\left(x^{3}\right)\right) \\ & =a x+b x^{2}+(a+c) x^{3}+o\left(x^{3}\right), \end{aligned}

sinx=x16x3+o(x3)\sin x=x-\frac{1}{6} x^{3}+o(x^{3}) ,由泰勒展开的唯一性,比较系数,有

{a=1,b=0,a+c=16,\left\{\begin{array}{l} a=1, \\ b=0, \\ a+c=-\frac{1}{6}, \end{array}\right.

解得

{a=1,b=0,c=76,\left\{\begin{array}{l} a=1, \\ b=0, \\ c=-\frac{7}{6}, \end{array}\right.

故应选(A)。

4

设函数 f(x)f(x) 在区间 [0,1][0,1] 上连续,则 01f(x)dx=\int_{0}^{1} f(x) d x= ( )

正确答案:B

【解析】将区间 [0,1][0,1] 上均分成 nn 份,取 ξk\xi_{k} 为第 kk 个小区间的中点,则 ξk=k1n+kn2=2k12n\xi_{k}=\frac{\frac{k-1}{n}+\frac{k}{n}}{2}=\frac{2 k-1}{2 n}

01f(x)dx=limnk=1nf(2k12n)1n, \int_{0}^{1} f(x) d x=\lim _{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2 k-1}{2 n}\right) \cdot \frac{1}{n},

故应选(B)。

5

二次型 f(x1,x2,x3)=(x1+x2)2+(x2+x3)2(x3x1)2f(x_{1}, x_{2}, x_{3})=(x_{1}+x_{2})^{2}+(x_{2}+x_{3})^{2}-(x_{3}-x_{1})^{2} 的正惯性指数与负惯性指数依次为( )

正确答案:B

【解析】

f=(x1+x2)2+(x2+x3)2(x3x1)2=2x22+2x1x2+2x1x3+2x2x3, f=\left(x_{1}+x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}-\left(x_{3}-x_{1}\right)^{2}=2 x_{2}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3},

对应的矩阵 A=(011121110)A=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}

λEA=λ111λ2111λ=λ(λ3)(λ+1), |\lambda E-A|=\left|\begin{array}{ccc} \lambda & -1 & -1 \\ -1 & \lambda-2 & -1 \\ -1 & -1 & \lambda \end{array}\right|=\lambda(\lambda-3)(\lambda+1),

AA 的特征值为 331-100 ,故 ff 的正、负惯性指数都是 11 ,故应选(B)。

6

α1=(101)\alpha_{1}=\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}α2=(121)\alpha_{2}=\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}α3=(312)\alpha_{3}=\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}β1=α1\beta_{1}=\alpha_{1}β2=α2kβ1\beta_{2}=\alpha_{2}-k \beta_{1}β3=α3l1β1l2β2\beta_{3}=\alpha_{3}-l_{1} \beta_{1}-l_{2} \beta_{2} ,若 β1\beta_{1}β2\beta_{2}β3\beta_{3} 两两正交,则 l1l_{1}l2l_{2} 依次为( )

正确答案:A

【解析】由已知,有

β1=α1, \beta_{1}=\alpha_{1},

β2=α2kβ1=α2kα1, \beta_{2}=\alpha_{2}-k \beta_{1}=\alpha_{2}-k \alpha_{1},

β3=α3l1β1l2β2=α3l1α1l2(α2kα1), \beta_{3}=\alpha_{3}-l_{1} \beta_{1}-l_{2} \beta_{2}=\alpha_{3}-l_{1} \alpha_{1}-l_{2}\left(\alpha_{2}-k \alpha_{1}\right),

β1\beta_{1}β2\beta_{2}β3\beta_{3} 两两正交,故 (β1,β2)=0(\beta_{1}, \beta_{2})=0 ,即

(α1,α2kα1)=(α1,α2)k(α1,α1)=22k=0, \left(\alpha_{1}, \alpha_{2}-k \alpha_{1}\right)=\left(\alpha_{1}, \alpha_{2}\right)-k\left(\alpha_{1}, \alpha_{1}\right)=2-2 k=0,

k=1k=1 ,此时 β3=α3(l1l2)α1l2α2\beta_{3}=\alpha_{3}-(l_{1}-l_{2}) \alpha_{1}-l_{2} \alpha_{2} 。又

(β1,β3)=(α1,α3(l1l2)α1l2α2)=(α1,α3)(l1l2)(α1,α1)l2(α1,α2)=5(l1l2)22l2=52l1=0, \begin{aligned} \left(\beta_{1}, \beta_{3}\right) & =\left(\alpha_{1}, \alpha_{3}-\left(l_{1}-l_{2}\right) \alpha_{1}-l_{2} \alpha_{2}\right) \\ & =\left(\alpha_{1}, \alpha_{3}\right)-\left(l_{1}-l_{2}\right)\left(\alpha_{1}, \alpha_{1}\right)-l_{2}\left(\alpha_{1}, \alpha_{2}\right) \\ & =5-\left(l_{1}-l_{2}\right) \cdot 2-2 l_{2}=5-2 l_{1}=0, \end{aligned}

l1=52l_{1}=\frac{5}{2}β2=α2α1=(020)\beta_{2}=\alpha_{2}-\alpha_{1}=\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} ,又

(β2,β3)=(β2,α3(l1l2)α1l2α2)=(β2,α3)(l1l2)(β2,α1)l2(β2,α2)=2(l1l2)0l24=24l2=0, \begin{aligned} \left(\beta_{2}, \beta_{3}\right) & =\left(\beta_{2}, \alpha_{3}-\left(l_{1}-l_{2}\right) \alpha_{1}-l_{2} \alpha_{2}\right) \\ & =\left(\beta_{2}, \alpha_{3}\right)-\left(l_{1}-l_{2}\right)\left(\beta_{2}, \alpha_{1}\right)-l_{2}\left(\beta_{2}, \alpha_{2}\right) \\ & =2-\left(l_{1}-l_{2}\right) \cdot 0-l_{2} \cdot 4=2-4 l_{2}=0, \end{aligned}

l2=12l_{2}=\frac{1}{2} ,故应选(A)。

7

AABBnn 阶实矩阵,下列不成立的是( )

正确答案:C

【解析】

对于(A)r(AOOATA)=r(A)+r(ATA)=r(A)+r(A)=2r(A)r\left(\begin{array}{cc}A & O \\ O & A^{T} A\end{array}\right)=r(A)+r(A^{T} A)=r(A)+r(A)=2 r(A)

对于(B)r(AABOAT)=r(AAT)+r(AB)r\left(\begin{array}{cc}A & A B \\ O & A^{T}\end{array}\right)=r\left(\begin{array}{c}A \\ A^{T}\end{array}\right)+r(A B) ,因 (EB)\begin{pmatrix} E & B \end{pmatrix} 行满秩,所以 r(AAB)=r(A)r\left(\begin{array}{ll}A & A B\end{array}\right)=r(A) ,于是 r(AABOAT)=r(A)+r(AT)=2r(A)r\left(\begin{array}{cc}A & A B \\ O & A^{T}\end{array}\right)=r(A)+r(A^{T})=2 r(A)

对于(D)r(AOBAAT)=r(A)+r(AT)=2r(A)r\left(\begin{array}{cc}A & O \\ B A & A^{T}\end{array}\right)=r(A)+r(A^{T})=2 r(A)

对于(C):取 A=(1010)A=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}B=(1000)B=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} ,则 (ABAOAAT)=(1010100000110011)\left(\begin{array}{cc}A & B A \\ O & A A^{T}\end{array}\right)=\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}r(ABAOAAT)=32r(A)=2r\left(\begin{array}{cc}A & B A \\ O & A A^{T}\end{array}\right)=3 \neq 2 r(A)=2 ,故应选 (C)。

8

A,BA,B 为随机事件,且 0<P(B)<10 < P(B) < 1 ,下列命题中为假命题的是( ).

正确答案:D

【解】由 P(AB)=P(A)P(A|B)=P(A)P(AB)=P(A)P(B)P(AB)=P(A)P(B) ,即事件A,B独立,

于是 P(AB)=P(AB)P(B)=P(A)P(B)P(B)=P(A)P(A|\overline{B})=\frac{P(A\overline{B})}{P(\overline{B})}=\frac{P(A)P(\overline{B})}{P(\overline{B})}=P(A) ;

P(AB)>P(A)P(A|B) > P(A)P(AB)>P(A)P(B)P(AB) > P(A)P(B) ,

从而 P(AB)=P(AB)P(B)=1P(A)P(B)+P(AB)1P(B)P(\overline{A}|\overline{B})=\frac{P(\overline{A}\overline{B})}{P(\overline{B})}=\frac{1 - P(A) - P(B) + P(AB)}{1 - P(B)}

>1P(A)P(B)+P(A)P(B)1P(B)=1P(A)=P(A)> \frac{1 - P(A) - P(B) + P(A)P(B)}{1 - P(B)}=1 - P(A)=P(\overline{A}) ;

P(AB)>P(AB)P(A|B) > P(A|\overline{B})P(AB)P(B)>P(A)P(AB)1P(B)\frac{P(AB)}{P(B)} > \frac{P(A) - P(AB)}{1 - P(B)} ,整理得 P(AB)>P(A)P(B)P(AB) > P(A)P(B) ,

P(AB)=P(AB)P(B)>P(A)P(B)P(B)=P(A)P(A|B)=\frac{P(AB)}{P(B)} > \frac{P(A)P(B)}{P(B)}=P(A) ,应选(D).

9

(X1,Y1),(X2,Y2),,(Xn,Yn)(X_{1},Y_{1}),(X_{2},Y_{2}),\cdots,(X_{n},Y_{n}) 为来自总体 N(μ1,μ2;σ12,σ22;ρ)N(\mu_{1},\mu_{2};\sigma_{1}^{2},\sigma_{2}^{2};\rho) 的简单随机样本,令 θ=μ1μ2\theta = \mu_{1} - \mu_{2}X=1ni=1nXi\overline{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i}Y=1ni=1nYi\overline{Y} = \frac{1}{n}\sum_{i=1}^{n}Y_{i}θ^=XY\hat{\theta} = \overline{X} - \overline{Y} ,则()

正确答案:C

【解】 XN(μ1,σ12n)\overline{X} \sim N(\mu_{1},\frac{\sigma_{1}^{2}}{n})YN(μ2,σ22n)\overline{Y} \sim N(\mu_{2},\frac{\sigma_{2}^{2}}{n})

E(θ^)=E(X)E(Y)=μ1μ2=θE(\hat{\theta}) = E(\overline{X}) - E(\overline{Y}) = \mu_{1} - \mu_{2} = \theta

D(θ^)=D(XY)=D(X)+D(Y)2Cov(X,Y)D(\hat{\theta}) = D(\overline{X} - \overline{Y}) = D(\overline{X}) + D(\overline{Y}) - 2\text{Cov}(\overline{X},\overline{Y})

=σ12n+σ22n2n[Cov(X1,Y)+Cov(X2,Y)++Cov(Xn,Y)]= \frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{n} - \frac{2}{n}[\text{Cov}(X_{1},\overline{Y}) + \text{Cov}(X_{2},\overline{Y}) + \cdots + \text{Cov}(X_{n},\overline{Y})]

=σ12n+σ22n2n2[Cov(X1,Y1)+Cov(X2,Y2)++Cov(Xn,Yn)]= \frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{n} - \frac{2}{n^{2}}[\text{Cov}(X_{1},Y_{1}) + \text{Cov}(X_{2},Y_{2}) + \cdots + \text{Cov}(X_{n},Y_{n})]

=σ12n+σ22n2n2nρσ1σ2=σ12+σ222ρσ1σ2n= \frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{n} - \frac{2}{n^{2}} \cdot n\rho\sigma_{1}\sigma_{2} = \frac{\sigma_{1}^{2} + \sigma_{2}^{2} - 2\rho\sigma_{1}\sigma_{2}}{n} ,应选(C).

10

X1,X2,,X16X_{1},X_{2},\cdots,X_{16} 是来自总体 N(μ,4)N(\mu,4) 的简单随机样本,考虑假设检验问题: H0:μ10H_{0}:\mu \leq 10H1:μ>10H_{1}:\mu > 10Φ(x)\Phi(x) 表示标准正态分布函数,若该检验问题的拒绝域为 W={X11}W = \{\overline{X} \geq 11\} ,其中 X=116i=116Xi\overline{X} = \frac{1}{16}\sum_{i=1}^{16}X_{i} ,则 μ=11.5\mu = 11.5 时,该检验犯第二类错误的概率为()。

正确答案:B

【解】 由题 XN(11.5,14)\overline{X} \sim N(11.5, \frac{1}{4}) ,或 X11.512N(0,1)\frac{\overline{X} - 11.5}{\frac{1}{2}} \sim N(0,1)

犯第二类错误的概率为

P{X<11}=P{X11.512<1}=Φ(1)=1Φ(1)P\{\overline{X} < 11\} = P\{\frac{\overline{X} - 11.5}{\frac{1}{2}} < -1\} = \Phi(-1) = 1 - \Phi(1)

应选(B)。

填空题

11

(填空题)

0+1x2+2x+2dx= \int_{0}^{+\infty} \frac{1}{x^{2}+2 x+2} d x=
12

(填空题)设函数 y=y(x)y = y(x) 由参数方程 {x=2et+t+1,y=4(t1)et+t2\begin{cases}x = 2\text{e}^t + t + 1, \\ y = 4(t - 1)\text{e}^t + t^2\end{cases} 所确定,则 d2ydx2t=0=\frac{\text{d}^2 y}{\text{d}x^2}\big|_{t=0} = ______。

13

(填空题)欧拉方程 x2y+xy4y=0x^{2}y'' + xy' - 4y = 0 满足条件 y(1)=1y(1) = 1y(1)=2y'(1) = 2 的解为 y=y = ______。

14

(填空题)设Σ为空间区域 {(x,y,z)x2+4y24,0z2}\{(x,y,z)\mid x^2 + 4y^2 \leq 4, 0 \leq z \leq 2\} 表面的外侧,则曲面积分 Σx2dydz+y2dzdx+zdxdy=\iint_{\Sigma} x^2 \mathrm{d}y\mathrm{d}z + y^2 \mathrm{d}z\mathrm{d}x + z \mathrm{d}x\mathrm{d}y = ______.

15

(填空题)设 A=a(ij)A=a_{(i j)} 为3阶矩阵, AijA_{i j} 为代数余子式,若 A 的每行元素之和均为2,且 A=3|A|=3 , 则 A11+A21+A31=A_{11}+A_{21}+A_{31}=

16

(填空题)甲,乙两个盒子中各装有 22 个红球和 22 个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球。令 XXYY 分别表示从甲盒和乙盒中取到的红球个数,则 XXYY 的相关系数为

解答题

17

(本题满分10分)

求极限 limx0(1+0xet2dtex11sinx)\lim\limits _{x→0}\left(\frac {1+\int_{0}^{x}\text{e}^{t^{2}}dt}{\text{e}^{x}-1}-\frac {1}{\sin x}\right)

18

(本题满分12分)

un(x)=enx+xn+1n(n+1)(n=1,2,)u_{n}(x)=\mathrm{e}^{-nx}+\dfrac{x^{n+1}}{n(n+1)}(n=1,2,\cdots) ,求级数 n=1un(x)\sum_{n=1}^{\infty}u_{n}(x) 的收敛域及和函数.

19

(本题满分12分)

已知曲线 C:{x2+2y2z=6,4x+2y+z=30,C:\begin{cases} x^{2}+2y^{2}-z=6, \\ 4x+2y+z=30, \end{cases}CC 上的点到 xOyxOy 坐标面距离的最大值.

20

(本题满分12分)

DR2D \subset \mathbf{R}^2 是有界单连通闭区域, I(D)=D(4x2y2)dxdyI(D) = \iint_D (4 - x^2 - y^2) \, dxdy 取得最大值的积分区域为 D1D_1

(Ⅰ)求 I(D1)I(D_1) 的值;

(Ⅱ)计算 D1(xex2+4y2+y)dx+(4yex2+4y2x)dyx2+4y2\int_{\partial D_1} \frac{(x \mathrm{e}^{x^2 + 4y^2} + y)dx + (4y \mathrm{e}^{x^2 + 4y^2} - x)dy}{x^2 + 4y^2} ,其中 D1\partial D_1D1D_1 的正向边界。

21

(本题满分12分)

已知 A=(a111a111a)A = \begin{pmatrix} a&1&-1 \\ 1&a&-1 \\ -1&-1&a \end{pmatrix}

(Ⅰ)求正交矩阵 PP ,使得 PTAPP^TAP 为对角矩阵;

(Ⅱ)求正定矩阵 CC ,使得 C2=(a+3)EAC^2 = (a + 3)E - A

22

(本题满分12分)

在区间 (0,2)(0,2) 上随机取一点,将该区间分成两段,较短一段的长度为 XX ,较长一段的长度为 YY ,令 Z=YXZ = \frac{Y}{X} .

(Ⅰ)求 XX 的概率密度;

(Ⅱ)求 ZZ 的概率密度;

(Ⅲ)求 E(XY)E\left( \frac{X}{Y} \right) .