2018 年真题

选择题

1

limx0(ex+ax2+bx)1x2=1\lim_{x \to 0} (e^{x} + a x^{2} + b x)^{\frac{1}{x^{2}}} = 1 ,则

正确答案:B
1=limx0(ex+ax2+bx)1x2=elimx0ln(ex+ax2+bx)x2=elimx0ex+2ax+b2x(ex+ax2+bx)=elimx0ex+2ax+b2xlimx0ex+2ax+b2x=0{x0ex+2ax+b2x=0{x0a=12 \begin{aligned} & 1 = \lim_{x \to 0} \left(e^{x} + a x^{2} + b x\right)^{\frac{1}{x^{2}}} = e^{\lim_{x \to 0} \frac{\ln \left(e^{x} + a x^{2} + b x\right)}{x^{2}}} = e^{\lim_{x \to 0} \frac{e^{x} + 2 a x + b}{2 x \left(e^{x} + a x^{2} + b x\right)}} = e^{\lim_{x \to 0} \frac{e^{x} + 2 a x + b}{2 x}} \\ & \Rightarrow \lim_{x \to 0} \frac{e^{x} + 2 a x + b}{2 x} = 0 \Rightarrow \left\{ \begin{array}{l} x \to 0 \\ \frac{e^{x} + 2 a x + b}{2 x} = 0 \Rightarrow \left\{ \begin{array}{l} x \to 0 \\ a = -\frac{1}{2} \end{array} \right. \end{array} \right. \end{aligned}
2

下列函数在 x=0x = 0 处不可导的是

正确答案:D

AA 可导:

f(0)=limx0xsin(x)x=limx0xsinxx=0f_{-}^{\prime}(0) = \lim_{x \to 0^{-}} \frac{|x| \sin(|x|)}{x} = \lim_{x \to 0^{-}} \frac{x \cdot \sin x}{x} = 0
f+(0)=limx0+xsin(x)x=limx0+xsinxx=0f_{+}^{\prime}(0) = \lim_{x \to 0^{+}} \frac{|x| \sin(|x|)}{x} = \lim_{x \to 0^{+}} \frac{x \cdot \sin x}{x} = 0

BB 可导:

f(0)=limx0xsinxx=limx0xsinxx=0f_{-}^{\prime}(0) = \lim_{x \to 0^{-}} \frac{|x| \sin \sqrt{|x|}}{x} = \lim_{x \to 0^{-}} \frac{-x \cdot \sin \sqrt{-x}}{x} = 0
f+(0)=limx0+xsinxx=limx0+xsinxx=0f_{+}^{\prime}(0) = \lim_{x \to 0^{+}} \frac{|x| \sin \sqrt{|x|}}{x} = \lim_{x \to 0^{+}} \frac{x \cdot \sin \sqrt{x}}{x} = 0

CC 可导:

f(0)=limx0cosx1x=limx012x2x=0f_{-}^{\prime}(0) = \lim_{x \to 0^{-}} \frac{\cos |x| - 1}{x} = \lim_{x \to 0^{-}} \frac{-\frac{1}{2} x^{2}}{x} = 0
f+(0)=limx0+cosx1x=limx0+12x2x=0f_{+}^{\prime}(0) = \lim_{x \to 0^{+}} \frac{\cos |x| - 1}{x} = \lim_{x \to 0^{+}} \frac{-\frac{1}{2} x^{2}}{x} = 0

DD 不可导:

f(0)=limx0cosx1x=limx012(x)x=12f_{-}^{\prime}(0) = \lim_{x \to 0^{-}} \frac{\cos \sqrt{|x|} - 1}{x} = \lim_{x \to 0^{-}} \frac{-\frac{1}{2}(-x)}{x} = \frac{1}{2}
f+(0)=limx0+cosx1x=limx0+12xx=12f_{+}^{\prime}(0) = \lim_{x \to 0^{+}} \frac{\cos \sqrt{|x|} - 1}{x} = \lim_{x \to 0^{+}} \frac{-\frac{1}{2} x}{x} = -\frac{1}{2}

f+(0)f(0)f_{+}^{\prime}(0) \neq f_{-}^{\prime}(0)

3


f(x)={1,x<01,x0f(x) = \begin{cases} -1, & x < 0 \\ 1, & x \geq 0 \end{cases}
g(x)={2+ax,x1x,1<x<0xb,x0g(x) = \begin{cases} 2 + a x, & x \leq -1 \\ x, & -1 < x < 0 \\ x - b, & x \geq 0 \end{cases}
f(x)+g(x)f(x) + g(x)R\mathbb{R} 上连续,则

正确答案:D

x0x \to 0^{-} 时,有:

limx0[f(x)+g(x)]=limx0f(x)+limx0g(x)=1+0=1 \lim_{x \to 0^{-}}[f(x) + g(x)] = \lim_{x \to 0^{-}} f(x) + \lim_{x \to 0^{-}} g(x) = -1 + 0 = -1

x0+x \to 0^{+} 时,有:

limx0+[f(x)+g(x)]=limx0+f(x)+limx0+g(x)=1+(0b)=1b \lim_{x \to 0^{+}}[f(x) + g(x)] = \lim_{x \to 0^{+}} f(x) + \lim_{x \to 0^{+}} g(x) = 1 + (0 - b) = 1 - b

由左右极限相等得:

1=1bb=2 -1 = 1 - b \Rightarrow b = 2

x1x \to -1^{-} 时,有:

limx1[f(x)+g(x)]=limx1f(x)+limx1g(x)=1+[2+a×(1)]=1a \lim_{x \to -1^{-}}[f(x) + g(x)] = \lim_{x \to -1^{-}} f(x) + \lim_{x \to -1^{-}} g(x) = -1 + [2 + a \times (-1)] = 1 - a

x1+x \to -1^{+} 时,有:

limx1+[f(x)+g(x)]=limx1+f(x)+limx1+g(x)=1+(1)=2 \lim_{x \to -1^{+}}[f(x) + g(x)] = \lim_{x \to -1^{+}} f(x) + \lim_{x \to -1^{+}} g(x) = -1 + (-1) = -2

由左右极限相等得:

2=1aa=3 -2 = 1 - a \Rightarrow a = -3
4

设函数 f(x)f(x)[0,1][0,1] 上二阶可导,且 01f(x)dx=0\int_{0}^{1} f(x) \, dx = 0 ,则

正确答案:D

B 错误:取函数 f(x)=x2+13f(x) = -x^{2} + \frac{1}{3} ,则有

01f(x)dx=01(x2+13)dx=0, \int_{0}^{1} f(x) \, dx = \int_{0}^{1} \left( -x^{2} + \frac{1}{3} \right) dx = 0,

同时 f(x)=2<0f''(x) = -2 < 0 ,而

f(12)=14+13=112>0. f\left( \frac{1}{2} \right) = -\frac{1}{4} + \frac{1}{3} = \frac{1}{12} > 0.

C 错误:取函数 f(x)=x12f(x) = x - \frac{1}{2} ,则有

01f(x)dx=01(x12)dx=0, \int_{0}^{1} f(x) \, dx = \int_{0}^{1} \left( x - \frac{1}{2} \right) dx = 0,

同时 f(x)=1>0f'(x) = 1 > 0 ,而

f(12)=0. f\left( \frac{1}{2} \right) = 0.

D 正确:(解析过程结合凸函数性质,当 f(x)>0f''(x) > 0 时函数下凸,由积分值为 00 可推导出中点函数值小于 00 ,具体过程略)

5

M=π2π2(1+x)21+x2dxM = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1 + x)^{2}}{1 + x^{2}} \, dxN=π2π21+xexdxN = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + x}{e^{x}} \, dxK=π2π2(1+cosx)dxK = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \sqrt{\cos x}) \, dx ,则

正确答案:C
M=π2π2(1+2x1+x2)dx=π2π21dx M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( 1 + \frac{2x}{1 + x^2} \right) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx

(奇函数部分积分为 00 ),故 M=πM = \pi

x[π2,π2]x \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] 时, 1+cosx11 + \sqrt{\cos x} \geq 1 ,所以

K=π2π2(1+cosx)dx>π2π21dx=M K = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \sqrt{\cos x}) dx > \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx = M

f(x)=1+xexf(x) = \frac{1 + x}{e^x} ,则 f(x)=(1+x)exf(x) = (1 + x) e^{-x}f(x)=xexf^\prime(x) = -x e^{-x}

[0,π2]\left[ 0, \frac{\pi}{2} \right]f(x)0f^\prime(x) \leq 0 ,在 [π2,0]\left[ -\frac{\pi}{2}, 0 \right]f(x)0f^\prime(x) \geq 0 ,且 f(x)f(x) 为偶函数, f(x)f(0)=1f(x) \leq f(0) = 1 ,故

N=π2π2f(x)dx<π2π21dx=M N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx < \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx = M

综上, K>M>NK > M > N

6
10dxx2x2(1xy)dy+01dxx2x2(1xy)dy= \int_{-1}^{0} dx \int_{-x}^{2-x^{2}} (1 - xy) \, dy + \int_{0}^{1} dx \int_{x}^{2-x^{2}} (1 - xy) \, dy =
正确答案:A

【解析】从原积分的两个积分区域可以看出,这是两个关于 y y 轴对称的区域。

D={(x,y)1x1,xy2x2} D = \{(x, y) \mid -1 \leq x \leq 1, |x| \leq y \leq 2-x^2\} ,则原式 =D(1xy)dxdy = \iint_D (1-xy)dxdy ,而 xy xy 是关于 x x 的奇函数,因此

D(1xy)dxdy=Ddxdy=201dxx2x2dy=201(2x2x)dx=73 \iint_D (1-xy)dxdy = \iint_D dxdy = 2 \int_0^1 dx \int_x^{2-x^2} dy = 2 \int_0^1 (2-x^2-x)dx = \frac{7}{3}
7

设矩阵 JJ 是三阶 Jordan 矩阵,若矩阵 QQJJ 相似,则 r(EQ)=r(E - Q) =

正确答案:A

若矩阵 QQJJ 相似,则矩阵 EQE - QEJE - J 相似,从而 r(EQ)=r(EJ)r(E - Q) = r(E - J)

计算各选项中 E矩阵E - \text{矩阵} 的秩:

  • 选项 A:
    EA=[011001000]E - A = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} ,秩为 22

  • 选项 D:
    ED=[001000000]E - D = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} ,秩为 11

根据相似矩阵秩相等及题目条件,故选 A。

8

AABBnn 阶矩阵,记 r(X)r(X) 为矩阵 XX 的秩, (X,Y)(X, Y) 表示分块矩阵,则

正确答案:A

因为 r(E,B)=nr(E, B) = nEE 为单位矩阵),所以

r(A,AB)=r[A(E,B)]=r(A), r(A, AB) = r[A(E, B)] = r(A),

故选 A。

填空题

9

(填空题) limx+x2[arctan(x+1)arctanx]=\lim_{x \to +\infty} x^{2}[\arctan (x+1) - \arctan x] =

10

(填空题)曲线 y=x2+2lnxy = x^{2} + 2 \ln x 过拐点处的切线方程为 ______。

11

(填空题) 5+1x24x+3dx=\displaystyle \int_{5}^{+\infty} \frac{1}{x^{2}-4x+3} \, dx =

12

(填空题)曲线 {x=cos3t,y=sin3t \begin{cases} x = \cos^3 t, \\ y = \sin^3 t \end{cases} t=π4t = \frac{\pi}{4} 处的曲率为( )。

13

(填空题)设 z=z(x,y)z = z(x, y) 由方程 lnz+ez1=xy\ln z + e^{z - 1} = xy 确定,则 zx(2,12)=\left. \frac{\partial z}{\partial x} \right\vert_{(2, \frac{1}{2})} =

14

(填空题)设 AA33 阶矩阵, α1,α2,α3\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3} 为线性无关的向量组。若 Aα1=2α1+α2+α3A\boldsymbol{\alpha}_{1} = 2\boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}Aα2=α2+2α3A\boldsymbol{\alpha}_{2} = \boldsymbol{\alpha}_{2} + 2\boldsymbol{\alpha}_{3}Aα3=α2+α3A\boldsymbol{\alpha}_{3} = -\boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3} ,则 AA 的实特征值为(  )。

解答题

15

(本题满分 1010 分)求不定积分 arctanex1dx\int \arctan \sqrt{e^{x} - 1} \, dx

16

(本题满分 10 分)已知连续函数 f(x)f(x) 满足

0xf(t)dt+0xtf(xt)dt=ax2. \int_{0}^{x} f(t) \, dt + \int_{0}^{x} t f(x - t) \, dt = a x^{2}.

(I) 求 f(x)f(x)
(II) 若 f(x)f(x) 在区间 [0,1][0,1] 上的平均值为 11 ,求 aa 的值。

17

(本题满分 10 分)
x=tsint(0t2π)x = t - \sin t \quad (0 \leq t \leq 2\pi) ,求

D(x+2y)dxdy \iint_{D} (x + 2y) \, dx \, dy
18

(本题满分 1010 分)已知常数 kln21k \geq \ln 2 - 1 ,证明: (x1)(xln2x+2klnx1)0(x-1)(x - \ln^{2} x + 2k \ln x - 1) \geq 0

19

(本题满分 1010 分)
将长为 2m2\,\mathrm{m} 的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值。

20

(本题满分 10 分)已知曲线 L:y=49x2(x0)L: y = \frac{4}{9} x^{2} \, (x \geq 0) ,点 O(0,0)O(0,0) ,点 A(0,1)A(0,1) ,设 PPLL 上的动点, SS 是直线 OAOA 与直线 APAP 及曲线 LL 所围成图形的面积。若 PP 运动到点 (3,4)(3,4) 时沿 xx 轴正向的速度是 44 ,求此时 SS 关于时间 tt 的变化率。

21

(本题满分 11 分)

设数列 {xn}\{x_n\} 满足: x1>0x_1 > 0xnexn+1=exn1(n=1,2,)x_n e^{x_{n+1}} = e^{x_n} - 1 \quad (n = 1, 2, \cdots) ,证明 {xn}\{x_n\} 收敛,并求 limnxn\lim\limits_{n \to \infty} x_n

22

(本题满分 11 分)设实二次型 f(x1,x2,x3)=(x1x2+x3)2+(x2+x3)2+(x1+ax3)2f(x_1, x_2, x_3) = (x_1 - x_2 + x_3)^2 + (x_2 + x_3)^2 + (x_1 + a x_3)^2 ,其中 aa 是参数。

(1) 求 f(x1,x2,x3)=0f(x_1, x_2, x_3) = 0 的解;

(2) 求 f(x1,x2,x3)f(x_1, x_2, x_3) 的规范形。

23

(本题满分 1111 分)

已知矩阵

A=(12a13027a),B=(1a2011111). A = \begin{pmatrix} 1 & 2 & a \\ 1 & 3 & 0 \\ 2 & 7 & -a \end{pmatrix}, \quad B = \begin{pmatrix} 1 & a & 2 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}.

(1)求 aa 使得存在可逆矩阵 PP 满足 AP=BAP = B
(2)求所有满足 AP=BAP = B 的可逆矩阵 PP