2025 年真题

选择题

1

设函数 z=z(x,y)z = z(x,y)z+lnzyxet2dt=0z + \ln z-\int_{y}^{x}e^{-t^{2}}dt = 0 确定,则 zx+zy=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=

正确答案:A

【解析】 z+lnzyxet2dt=0z+\ln z - \int_{y}^{x}e^{-t^{2}}dt = 0 ,分别对 xxyy 求偏导,得:

zx+1zzxex2=0zx=zz+1ex2\frac{\partial z}{\partial x}+\frac{1}{z}\frac{\partial z}{\partial x}-e^{-x^{2}} = 0\Rightarrow\frac{\partial z}{\partial x}=\frac{z}{z + 1}e^{-x^{2}}

zy+1zzy+ey2=0.zy=zz+1ey2\frac{\partial z}{\partial y}+\frac{1}{z}\frac{\partial z}{\partial y}+e^{-y^{2}} = 0.\Rightarrow\frac{\partial z}{\partial y}=\frac{-z}{z + 1}e^{-y^{2}}

zx+zy=zz+1(ex2ey2)\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=\frac{z}{z + 1}(e^{-x^{2}}-e^{-y^{2}})

2

已知函数 f(x)=0xet2sintdtf(x)=\int_{0}^{x}e^{t^{2}}\sin tdtg(x)=0xet2dtsin2xg(x)=\int_{0}^{x}e^{t^{2}}dt\cdot\sin^{2}x ,则

正确答案:B

【解析】 

f(x)=ex2sinx,f(x)=2xex2sinx+ex2cosxf^\prime(x)=e^{x^{2}}\sin x,f^{\prime\prime}(x)=2xe^{x^{2}}\sin x + e^{x^{2}}\cos x  

f(0)=0,f(0)=1>0f^\prime(0)=0,f^{\prime\prime}(0)=1\gt0

x=0x = 0f(x)f(x) 的极值点. 

g(x)=ex2sin2x+sin2x0xet2dtg^\prime(x)=e^{x^{2}}\sin^{2}x + \sin2x\int_{0}^{x}e^{t^{2}}dt , 

g(x)=ex2sin2x+2xex2sin2x+sin2xex2+2cos2x0xet2dtg^{\prime\prime}(x)=e^{x^{2}}\sin2x + 2xe^{x^{2}}\sin^{2}x + \sin2xe^{x^{2}} + 2\cos2x\int_{0}^{x}e^{t^{2}}dt  

g(0)=0, g(0)=0, g(0)>0g^\prime(0)=0,\ g^{\prime\prime}(0)=0,\ g^{\prime\prime\prime}(0)\gt0

(0,0)(0,0)y=g(x)y = g(x) 的拐点.

3

如果对微分方程 y2ay+(a+2)y=0y'' - 2ay' + (a + 2)y = 0 任一解 y(x)y(x) ,反常积分 0+y(x)dx\int_{0}^{+\infty} y(x)dx 均收敛,则 aa 的取值范围为

正确答案:C

【解析】当 a=2a = -2 时, y+4y=0y'' + 4y' = 0 ,通解: c1+c2e4tc_1 + c_2e^{-4t}c0c \neq 0 时, 0+(c1+c2e4x)dx\int_{0}^{+\infty} (c_1 + c_2e^{-4x})dx 不收敛.

故B、D排除.

a=12a = -\frac{1}{2} 时, y+y+32y=0y'' + y' + \frac{3}{2}y = 0 ,通解: y(t)=e12t(a1cos(52t)+B(sin52t))y(t) = e^{-\frac{1}{2}t}(a_1\cos(\frac{\sqrt{5}}{2}t) + B(\sin\frac{\sqrt{5}}{2}t))

0+y(x)dx\int_{0}^{+\infty} y(x)dx 收敛.

4

设函数 f(x)f(x)g(x)g(x)x=0x = 0 某去心邻域内有定义且恒不为 00 ,若 x0x \to 0 时, f(x)f(x)g(x)g(x) 的高阶无穷小,则当 x0x \to 0

正确答案:C

【解析】由题易知, x0x \to 0 时, f(x)f(x)g(x)g(x) 高阶无穷小.

则有 limx0f(x)g(x)=0\lim\limits_{x \to 0}\frac{f(x)}{g(x)} = 0limx0f(x)=0\lim\limits_{x \to 0}f(x) = 0limx0g(x)=0\lim\limits_{x \to 0}g(x) = 0 .

f(x)f(x)g(x)g(x)x=0x = 0 某去心邻域内有定义且不恒等于 00 .

故对于A选项,等式两端同除 g(x)g(x) 得:

f(x)g(x)+1=o[g(x)]g(x)\frac{f(x)}{g(x)} + 1 = \frac{o[g(x)]}{g(x)}

取极限得

limx0(f(x)g(x)+1)=limx0o[g(x)]g(x)\lim\limits_{x \to 0}(\frac{f(x)}{g(x)} + 1) = \lim\limits_{x \to 0}\frac{o[g(x)]}{g(x)}

0+1=00 + 1 = 0 ,显然A不成立.

对于B选项,等式两端同除 f2(x)f^2(x)

g(x)f(x)=o[f2(x)]f2(x)\frac{g(x)}{f(x)} = \frac{o[f^2(x)]}{f^2(x)}

两端取极限得 limx0g(x)f(x)=limx0o[f2(x)]f2(x)\lim\limits_{x \to 0}\frac{g(x)}{f(x)} = \lim\limits_{x \to 0}\frac{o[f^2(x)]}{f^2(x)} ,即 =0\infty = 0 ,显然不成立.

对于C选项,等式两端同除 g(x)g(x)

f(x)g(x)=o[eg(x)1]g(x)\frac{f(x)}{g(x)} = \frac{o[\mathrm{e}^{g(x)} - 1]}{g(x)}

取极限得 limx0f(x)g(x)=limx0o[eg(x)1]g(x)=limx0o[g(x)]g(x)\lim\limits_{x \to 0}\frac{f(x)}{g(x)} = \lim\limits_{x \to 0}\frac{o[\mathrm{e}^{g(x)} - 1]}{g(x)} = \lim\limits_{x \to 0}\frac{o[g(x)]}{g(x)}

显然有 0=00 = 0 ,故C正确.

对于D等式两端同除 g(x)g(x)

f(x)g2(x)=o[g2(x)]g2(x)\frac{f(x)}{g^2(x)} = \frac{o[g^2(x)]}{g^2(x)}

取极限得 limx0f(x)g2(x)=limx0o[g2(x)]g2(x)\lim\limits_{x \to 0}\frac{f(x)}{g^2(x)} = \lim\limits_{x \to 0}\frac{o[g^2(x)]}{g^2(x)} ,显然不成立.

综上选C.

5

设函数 f(x,y)f(x,y) 连续,则 22dx4x24f(x,y)dy=\int_{-2}^{2}dx\int_{4 - x^2}^{4} f(x,y)dy =

正确答案:A

【解析】由题易知,此二重积分积分区域为 

D={(x,y)4x2y4,2x2}D = \left\{(x,y)\vert 4 - x^2 \leq y \leq 4, -2 \leq x \leq 2\right\} ,对应图像为上图所示。

D1={(x,y)4x2y4,2x0}D_1 = \left\{(x,y)\vert 4 - x^2 \leq y \leq 4, -2 \leq x \leq 0\right\}D2={(x,y)4x2y4,0x2}D_2 = \left\{(x,y)\vert 4 - x^2 \leq y \leq 4, 0 \leq x \leq 2\right\} ,且 I=22dx4x24f(x,y)dyI = \int_{-2}^{2}dx\int_{4 - x^2}^{4}f(x,y)dy ,则 I=D1f(x,y)dσ+D2f(x,y)dσI = \iint\limits_{D_1} f(x,y)d\sigma + \iint\limits_{D_2} f(x,y)d\sigma ,交换积分次序得 

I=04dy24yf(x,y)dx+04dy4y2f(x,y)dxI = \int_{0}^{4}dy\int_{-2}^{-\sqrt{4 - y}} f(x,y)dx + \int_{0}^{4}dy\int_{\sqrt{4 - y}}^{2} f(x,y)dx  

=04[24yf(x,y)dx+4y2f(x,y)dx]dy= \int_{0}^{4}\left[\int_{-2}^{-\sqrt{4 - y}} f(x,y)dx + \int_{\sqrt{4 - y}}^{2} f(x,y)dx\right]dy  

故 A 正确。

6

设单位质点 P,QP,Q 分别位于点 (0,0)(0,0)(0,1)(0,1) 处, PP 从点 (0,0)(0,0) 出发沿 xx 轴正向移动,记 GG 为引力常量,则当质点 PP 移动到点 (l,0)(l,0) 时,克服质点 QQ 的引力所做的功为(  )

正确答案:A

【解析】由题可知,其对应如图所示. 

单位质点 PP 与单位质点 QQ 之间的引力为 

F=G11r2F = G\frac{1\cdot1}{r^{2}}  

其中 rr 为两质点间的距离. 

且由图可知 r2=x2+1r^{2}=x^{2}+1  

又引力 FFxx 方向上的力投影为 Fx=Fcosθ=x1+x2FF_{x}=F\cos\theta=\frac{x}{\sqrt{1 + x^{2}}}F

故克服引力做功为: 

W=01Fxdx=01G(x2+1)x1+x2dx=01Gx(1+x2)32dxW = \int_{0}^{1}F_{x}\mathrm{d}x=\int_{0}^{1}\frac{G}{(x^{2}+1)}\frac{x}{\sqrt{1 + x^{2}}}\mathrm{d}x=\int_{0}^{1}\frac{Gx}{(1 + x^{2})^{\frac{3}{2}}}\mathrm{d}x

7

设函数 f(x)f(x) 连续,给出下列 4 个条件:

limx0f(x)f(0)x\lim\limits_{x \to 0}\frac{|f(x)| - f(0)}{x} 存在;

limx0f(x)f(0)x\lim\limits_{x \to 0}\frac{f(x) - |f(0)|}{x} 存在;

limx0f(x)x\lim\limits_{x \to 0}\frac{|f(x)|}{x} 存在;

limx0f(x)f(0)x\lim\limits_{x \to 0}\frac{|f(x) - f(0)|}{x} 存在。

其中可得到“ f(x)f(x)x=0x = 0 处可导”的条件个数为

正确答案:B

【解析】
① 已知 limx0f(x)f(0)x=A\lim\limits_{x \to 0}\frac{|f(x)| - f(0)}{x} = A
可得 f(0)f(0)=0f(0)=f(0)f(0)=0|f(0)| - f(0) = 0 \Rightarrow f(0) = |f(0)| \Rightarrow f(0) = 0f(0)>0f(0) > 0

f(0)>0f(0) > 0 ,则当 x0x \to 0 时,有 f(x)>0f(x) > 0
于是 limx0f(x)f(0)x=limx0f(x)f(0)x=Af(0)=A\lim\limits_{x \to 0}\frac{|f(x)| - f(0)}{x} = \lim\limits_{x \to 0}\frac{f(x) - f(0)}{x} = A \Rightarrow f'(0) = A

f(0)=0f(0) = 0 ,由 limx0f(x)f(0)x=limx0f(x)x=A\lim\limits_{x \to 0}\frac{|f(x)| - f(0)}{x} = \lim\limits_{x \to 0}\frac{|f(x)|}{x} = A
可得

{limx0+f(x)x=Alimx0f(x)x=A \begin{cases} \lim\limits_{x \to 0^+}\left|\frac{f(x)}{x}\right| = A \\ \lim\limits_{x \to 0^-}\left|-\frac{f(x)}{x}\right| = A \end{cases}

A=0A = 0 ,则 f(0)f'(0) 存在;若 A0A \neq 0 ,则 f(0)f'(0) 不存在。


② 由 limx0f(x)f(0)x=Af(0)=f(0)\lim\limits_{x \to 0}\frac{f(x) - |f(0)|}{x} = A \Rightarrow f(0) = |f(0)|
因此 f(0)=0f(0) = 0f(0)>0f(0) > 0

f(0)=0f(0) = 0 ,则

A=limx0f(x)f(0)x=limx0f(x)x=f(0) A = \lim\limits_{x \to 0}\frac{f(x) - |f(0)|}{x} = \lim\limits_{x \to 0}\frac{f(x)}{x} = f'(0)

f(0)>0f(0) > 0 ,则

A=limx0f(x)f(0)x=f(0) A = \lim\limits_{x \to 0}\frac{f(x) - f(0)}{x} = f'(0)

因此②成立。


③ 由 limx0f(x)x\lim\limits_{x \to 0}\frac{|f(x)|}{x} 存在,可得 f(0)=0f(0)=0|f(0)| = 0 \Rightarrow f(0) = 0
此时与①情况相同,因此③错误。


④ 若 limx0f(x)f(0)x\lim\limits_{x \to 0}\frac{|f(x)| - |f(0)|}{x} 存在,则 f(x)|f(x)|x=0x = 0 处可导,
进而 f(x)f(x)x=0x = 0 处可导,因此④正确。


综上,①③错误,②④正确,选 B。

8

设矩阵

(1202a000b) \begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 0 & b \end{pmatrix}

有一个正特征值和两个负特征值,则( )

正确答案:D

【解析】

A=(1202a000b)A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 0 & b \end{pmatrix} ,为实对称矩阵,对应二次型为
f(x1,x2,x3)=x12+ax22+bx32+4x1x2f(x_1, x_2, x_3) = x_1^2 + a x_2^2 + b x_3^2 + 4 x_1 x_2

用配方法将其化为标准型:
f(x1,x2,x3)=(x1+2x2)2+(a4)x22+bx32f(x_1, x_2, x_3) = (x_1 + 2 x_2)^2 + (a - 4) x_2^2 + b x_3^2

已知 AA 有一正两负特征值,则

{a4<0b<0{a<4b<0 \begin{cases} a - 4 < 0 \\ b < 0 \end{cases} \Rightarrow \begin{cases} a < 4 \\ b < 0 \end{cases}

故选 D。

9

下列矩阵中,可以经过若干初等行变换得到矩阵

(110100120000) \begin{pmatrix}1&1&0&1\\0&0&1&2\\0&0&0&0\end{pmatrix}

的是

正确答案:B

【解析】

A选项:

(110112132314)(110101120112)(110101120000) \begin{pmatrix}1&1&0&1\\1&2&1&3\\2&3&1&4\end{pmatrix} \to \begin{pmatrix}1&1&0&1\\0&1&1&2\\0&1&1&2\end{pmatrix} \to \begin{pmatrix}1&1&0&1\\0&1&1&2\\0&0&0&0\end{pmatrix}

 

B选项:

(110111251113)(110100240012)(110100120000) \begin{pmatrix}1&1&0&1\\1&1&2&5\\1&1&1&3\end{pmatrix} \to \begin{pmatrix}1&1&0&1\\0&0&2&4\\0&0&1&2\end{pmatrix} \to \begin{pmatrix}1&1&0&1\\0&0&1&2\\0&0&0&0\end{pmatrix}

 

C选项:

(100101030100)(100001000001) \begin{pmatrix}1&0&0&1\\0&1&0&3\\0&1&0&0\end{pmatrix} \to \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\end{pmatrix}

 

D选项:

(112312232346)(112301000100)(112301000000) \begin{pmatrix}1&1&2&3\\1&2&2&3\\2&3&4&6\end{pmatrix} \to \begin{pmatrix}1&1&2&3\\0&1&0&0\\0&1&0&0\end{pmatrix} \to \begin{pmatrix}1&1&2&3\\0&1&0&0\\0&0&0&0\end{pmatrix}
10

33 阶矩阵 A,B\boldsymbol{A}, \boldsymbol{B} 满足 r(AB)=r(BA)+1r(\boldsymbol{AB}) = r(\boldsymbol{BA}) + 1 ,则

正确答案:D

【解析】

A=(111111111)\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}B=(101101101)\boldsymbol{B} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}
AB=(303303303)\boldsymbol{AB} = \begin{pmatrix} 3 & 0 & -3 \\ 3 & 0 & -3 \\ 3 & 0 & -3 \end{pmatrix}r(AB)=1r(\boldsymbol{AB}) = 1

BA=(000000000)\boldsymbol{BA} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}r(BA)=0r(\boldsymbol{BA}) = 0 ,排除选项 B 和 C。

A+B=(210210210)\boldsymbol{A + B} = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 0 \end{pmatrix}r(A+B)=1r(\boldsymbol{A + B}) = 1 ,排除选项 A,故选 D。

填空题

11

(填空题)设 1+ax(2x+a)dx=ln2\int_{1}^{+\infty} \frac{a}{x(2x + a)} \, dx = \ln 2 ,则 a=a = ______。

12

(填空题)曲线 y=x33x2+13y = \sqrt[3]{x^3 - 3x^2 + 1} 的渐近线方程为______.

13

(填空题) limn1n2[ln1n+2ln2n++(n1)lnn1n]=\lim\limits_{n \to \infty} \frac{1}{n^2} \left[ \ln \frac{1}{n} + 2\ln \frac{2}{n} + \cdots + (n - 1)\ln \frac{n - 1}{n} \right] =  .

14

(填空题)已知函数 y=y(x)y = y(x)

{x=ln(1+2t)2t1y+t2eu2du=0 \begin{cases}x = \ln(1 + 2t)\\2t - \int_{1}^{y + t^2} e^{-u^2} du = 0\end{cases}

确定,则 dydxt=0=\frac{dy}{dx}\big|_{t = 0} = ______ 。

15

(填空题)微分方程 (2y3x)dx+(2x5y)dy=0 (2y - 3x) \, dx + (2x - 5y) \, dy = 0 满足条件 y(1)=1 y(1) = 1 的解为 ______ .

16

(填空题)设矩阵 A=(a1,a2,a3,a4) A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3, \boldsymbol{a}_4) ,若 a1,a2,a3\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3 线性无关,且 a1+a2=a3+a4\boldsymbol{a}_1 + \boldsymbol{a}_2 = \boldsymbol{a}_3 + \boldsymbol{a}_4 ,则方程组 Ax=a1+4a4 A\boldsymbol{x} = \boldsymbol{a}_1 + 4\boldsymbol{a}_4 的通解为 x=\boldsymbol{x} = ______.

解答题

17

(本题满分 1010 分)

计算 011(x+1)(x22x+2)dx\displaystyle \int_{0}^{1} \frac{1}{(x + 1)(x^2 - 2x + 2)} \, dx

18

(本题满分12分)

设函数 f(x)f(x)x=0x = 0 处连续,且 limx0xf(x)e2sinx+1ln(1+x)+ln(1x)=3\lim\limits_{x \to 0}\frac{xf(x) - e^{2\sin x} + 1}{\ln(1 + x) + \ln(1 - x)} = - 3

证明 f(x)f(x)x=0x = 0 处可导,并求 f(0)f^\prime(0)

19

(本题满分12分)

设函数 f(x,y)f(x,y) 可微,且满足 df(x,y)=2xeydx+ey(x2y1)dy\mathrm{d}f(x,y) = -2x\mathrm{e}^{-y}\mathrm{d}x + \mathrm{e}^{-y}(x^2 - y - 1)\mathrm{d}yf(0,0)=2f(0,0) = 2 ,求 f(x,y)f(x,y) ,并求 f(x,y)f(x,y) 的极值.

20

(本题满分12分)

已知平面有界区域 D={(x,y)x2+y24x,x2+y24y}D =\{(x,y)|x^2 + y^2 \leq 4x, x^2 + y^2 \leq 4y\} ,计算 D(xy)2dxdy\iint_D (x - y)^2 dxdy

21

(本题满分12分)

设函数 f(x)f(x) 在区间 (a,b)(a,b) 内可导.证明导函数 f(x)f'(x)(a,b)(a,b) 内严格单调增加的充分必要条件是:对 (a,b)(a,b) 内任意的 x1,x2,x3x_1,x_2,x_3 ,当 x1<x2<x3x_1\lt x_2\lt x_3

f(x2)f(x1)x2x1<f(x3)f(x2)x3x2\frac{f(x_2) - f(x_1)}{x_2 - x_1}\lt\frac{f(x_3) - f(x_2)}{x_3 - x_2}
22

(本题满分12分)

已知矩阵 A=[41211121a]\boldsymbol{A}=\begin{bmatrix}4&1&-2\\1&1&1-2&1&a\end{bmatrix}B=[k00060000]\boldsymbol{B}=\begin{bmatrix}k&0&0\\0&6&0\\0&0&0\end{bmatrix} 合同。

(1)求 aa 的值及 kk 的取值范围;

(2)若存在正交矩阵 Q\boldsymbol{Q} ,使得 QTAQ=B\boldsymbol{Q}^{\text{T}}\boldsymbol{A}\boldsymbol{Q}=\boldsymbol{B} ,求 kkQ\boldsymbol{Q} .