卷 4 填空题 本题共5分,每小题3分,满分15分
1 同试卷 3 第 1 题
2 设
f ( x ) = 1 1 + x 2 + x 3 ∫ 0 1 f ( x ) d x f(x) = \frac{1}{1 + x^2} + x^3\int_0^1f(x)\dx f ( x ) = 1 + x 2 1 + x 3 ∫ 0 1 f ( x ) d x
,则
∫ 0 1 f ( x ) d x = \int_0^1f(x)\dx = ∫ 0 1 f ( x ) d x =
______.
【答案】
π 3 \frac{\pi}{3} 3 π
【解析】 设
A = ∫ 0 1 f ( x ) d x A = \int_0^1 f(x) \, dx A = ∫ 0 1 f ( x ) d x
。由题设方程
f ( x ) = 1 1 + x 2 + x 3 ∫ 0 1 f ( x ) d x = 1 1 + x 2 + A x 3 , f(x) = \frac{1}{1 + x^2} + x^3 \int_0^1 f(x) \, dx = \frac{1}{1 + x^2} + A x^3, f ( x ) = 1 + x 2 1 + x 3 ∫ 0 1 f ( x ) d x = 1 + x 2 1 + A x 3 , 两边在区间
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
上积分得
A = ∫ 0 1 f ( x ) d x = ∫ 0 1 1 1 + x 2 d x + A ∫ 0 1 x 3 d x . A = \int_0^1 f(x) \, dx = \int_0^1 \frac{1}{1 + x^2} \, dx + A \int_0^1 x^3 \, dx. A = ∫ 0 1 f ( x ) d x = ∫ 0 1 1 + x 2 1 d x + A ∫ 0 1 x 3 d x . 计算积分:
∫ 0 1 1 1 + x 2 d x = arctan x ∣ 0 1 = π 4 , ∫ 0 1 x 3 d x = 1 4 . \int_0^1 \frac{1}{1 + x^2} \, dx = \arctan x \Big|_0^1 = \frac{\pi}{4}, \quad \int_0^1 x^3 \, dx = \frac{1}{4}. ∫ 0 1 1 + x 2 1 d x = arctan x 0 1 = 4 π , ∫ 0 1 x 3 d x = 4 1 . 代入得
A = π 4 + A 4 . A = \frac{\pi}{4} + \frac{A}{4}. A = 4 π + 4 A . 解方程:
A − A 4 = π 4 , 3 A 4 = π 4 , A = π 3 . A - \frac{A}{4} = \frac{\pi}{4}, \quad \frac{3A}{4} = \frac{\pi}{4}, \quad A = \frac{\pi}{3}. A − 4 A = 4 π , 4 3 A = 4 π , A = 3 π . 因此,
∫ 0 1 f ( x ) d x = π 3 . \int_0^1 f(x) \, dx = \frac{\pi}{3}. ∫ 0 1 f ( x ) d x = 3 π . 3 设
n n n
阶矩阵
A = ( 0 1 1 ⋯ 1 1 1 0 1 ⋯ 1 1 1 1 0 ⋯ 1 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 1 1 ⋯ 0 1 1 1 1 ⋯ 1 0 ) A = \begin{pmatrix}
0 & 1 & 1 & \cdots & 1 & 1 \\
1 & 0 & 1 & \cdots & 1 & 1 \\
1 & 1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & \cdots & 1 & 0
\end{pmatrix} A = 0 1 1 ⋮ 1 1 1 0 1 ⋮ 1 1 1 1 0 ⋮ 1 1 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ 1 1 1 ⋮ 0 1 1 1 1 ⋮ 1 0
,则
∣ A ∣ = |A|= ∣ A ∣ =
______.
【答案】
( − 1 ) n − 1 ( n − 1 ) (-1)^{n-1}(n-1) ( − 1 ) n − 1 ( n − 1 )
【解析】
设
J J J
为
n n n
阶全 1 矩阵,则
A = J − I A = J - I A = J − I
,其中
I I I
是单位矩阵。 矩阵
J J J
的特征值为
n n n
(单重)和
0 0 0
(
n − 1 n-1 n − 1
重),因此
A A A
的特征值为
n − 1 n-1 n − 1
和
− 1 -1 − 1
(
n − 1 n-1 n − 1
重)。 行列式为特征值的乘积,故
∣ A ∣ = ( n − 1 ) ⋅ ( − 1 ) n − 1 .
|A| = (n-1) \cdot (-1)^{n-1}.
∣ A ∣ = ( n − 1 ) ⋅ ( − 1 ) n − 1 . 4 设
A A A
,
B B B
是任意两个随机事件,则
P { ( A ˉ + B ) ( A + B ) ( A ˉ + B ˉ ) ( A + B ˉ ) } = P\{(\bar A + B)(A + B)(\bar A + \bar B)(A + \bar B)\} = P {( A ˉ + B ) ( A + B ) ( A ˉ + B ˉ ) ( A + B ˉ )} =
______.
【答案】 0
【解析】 考虑事件
E = ( A ˉ ∪ B ) ∩ ( A ∪ B ) ∩ ( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ ) E = (\bar A \cup B) \cap (A \cup B) \cap (\bar A \cup \bar B) \cap (A \cup \bar B) E = ( A ˉ ∪ B ) ∩ ( A ∪ B ) ∩ ( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ )
。
首先,简化
( A ˉ ∪ B ) ∩ ( A ∪ B ) (\bar A \cup B) \cap (A \cup B) ( A ˉ ∪ B ) ∩ ( A ∪ B )
。通过集合运算,有
( A ˉ ∪ B ) ∩ ( A ∪ B ) = B
(\bar A \cup B) \cap (A \cup B) = B
( A ˉ ∪ B ) ∩ ( A ∪ B ) = B 类似地,简化
( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ ) (\bar A \cup \bar B) \cap (A \cup \bar B) ( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ )
,得
( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ ) = B ˉ
(\bar A \cup \bar B) \cap (A \cup \bar B) = \bar B
( A ˉ ∪ B ˉ ) ∩ ( A ∪ B ˉ ) = B ˉ 因此,
E = B ∩ B ˉ = ∅
E = B \cap \bar B = \emptyset
E = B ∩ B ˉ = ∅ 即
E E E
是不可能事件。
故
P ( E ) = 0 P(E) = 0 P ( E ) = 0
。
5 设随机变量
X X X
服从参数为
( 2 , p ) (2,p) ( 2 , p )
的二项分布,随机变量
Y Y Y
服从参数为
( 3 , p ) (3,p) ( 3 , p )
的二项分布.
若
P { X ≥ 1 } = 5 9 P\{X \ge 1\} = \frac{5}{9} P { X ≥ 1 } = 9 5
,则
P { Y ≥ 1 } = P\{Y \ge 1\} = P { Y ≥ 1 } =
______.
【答案】
19 27 \frac{19}{27} 27 19
【解析】 由
X ∼ B ( 2 , p ) X \sim B(2, p) X ∼ B ( 2 , p )
和
P { X ≥ 1 } = 5 9 P\{X \geq 1\} = \frac{5}{9} P { X ≥ 1 } = 9 5
,得
P { X = 0 } = 1 − 5 9 = 4 9 .
P\{X = 0\} = 1 - \frac{5}{9} = \frac{4}{9}.
P { X = 0 } = 1 − 9 5 = 9 4 . 由于
P { X = 0 } = ( 1 − p ) 2 P\{X = 0\} = (1-p)^2 P { X = 0 } = ( 1 − p ) 2
,所以
( 1 − p ) 2 = 4 9 ,
(1-p)^2 = \frac{4}{9},
( 1 − p ) 2 = 9 4 , 解得
1 − p = 2 3 1-p = \frac{2}{3} 1 − p = 3 2
(取正值),故
p = 1 3 .
p = \frac{1}{3}.
p = 3 1 . 对于
Y ∼ B ( 3 , p ) Y \sim B(3, p) Y ∼ B ( 3 , p )
,有
P { Y ≥ 1 } = 1 − P { Y = 0 } ,
P\{Y \geq 1\} = 1 - P\{Y = 0\},
P { Y ≥ 1 } = 1 − P { Y = 0 } , 其中
P { Y = 0 } = ( 1 − p ) 3 = ( 2 3 ) 3 = 8 27 .
P\{Y = 0\} = (1-p)^3 = \left(\frac{2}{3}\right)^3 = \frac{8}{27}.
P { Y = 0 } = ( 1 − p ) 3 = ( 3 2 ) 3 = 27 8 . 因此,
P { Y ≥ 1 } = 1 − 8 27 = 19 27 .
P\{Y \geq 1\} = 1 - \frac{8}{27} = \frac{19}{27}.
P { Y ≥ 1 } = 1 − 27 8 = 27 19 . 选择题 本题共5小题,每小题3分,满分15分
6 设
f ( x ) f(x) f ( x )
,
ϕ ( x ) \phi (x) ϕ ( x )
在点
x = 0 x = 0 x = 0
的某邻域内连续,且当
x → 0 x \to 0 x → 0
时,
f ( x ) f(x) f ( x )
是
ϕ ( x ) \phi (x) ϕ ( x )
的高阶无穷小,
则当
x → 0 x \to 0 x → 0
时,
∫ 0 x f ( t ) sin t d t \int_0^x f(t)\sin t\dt ∫ 0 x f ( t ) sin t d t
是
∫ 0 x t ϕ ( t ) d t \int_0^x t\phi(t)\dt ∫ 0 x tϕ ( t ) d t
的
查看答案与解析
收藏
正确答案:B 【解析】 给定当
x → 0 x \to 0 x → 0
时,
f ( x ) f(x) f ( x )
是
ϕ ( x ) \phi(x) ϕ ( x )
的高阶无穷小,即
lim x → 0 f ( x ) ϕ ( x ) = 0 \lim_{x \to 0} \frac{f(x)}{\phi(x)} = 0 lim x → 0 ϕ ( x ) f ( x ) = 0
。需要比较
∫ 0 x f ( t ) sin t d t \int_0^x f(t)\sin t\,dt ∫ 0 x f ( t ) sin t d t
和
∫ 0 x t ϕ ( t ) d t \int_0^x t\phi(t)\,dt ∫ 0 x tϕ ( t ) d t
的阶数。考虑极限:
lim x → 0 ∫ 0 x f ( t ) sin t d t ∫ 0 x t ϕ ( t ) d t \lim_{x \to 0} \frac{\int_0^x f(t)\sin t\,dt}{\int_0^x t\phi(t)\,dt} x → 0 lim ∫ 0 x tϕ ( t ) d t ∫ 0 x f ( t ) sin t d t 由于分子和分母在
x → 0 x \to 0 x → 0
时均趋于 0,且被积函数连续,应用洛必达法则:
lim x → 0 d d x ∫ 0 x f ( t ) sin t d t d d x ∫ 0 x t ϕ ( t ) d t = lim x → 0 f ( x ) sin x x ϕ ( x ) \lim_{x \to 0} \frac{\frac{d}{dx} \int_0^x f(t)\sin t\,dt}{\frac{d}{dx} \int_0^x t\phi(t)\,dt} = \lim_{x \to 0} \frac{f(x)\sin x}{x\phi(x)} x → 0 lim d x d ∫ 0 x tϕ ( t ) d t d x d ∫ 0 x f ( t ) sin t d t = x → 0 lim x ϕ ( x ) f ( x ) sin x 其中,
sin x x → 1 \frac{\sin x}{x} \to 1 x s i n x → 1
当
x → 0 x \to 0 x → 0
,因此:
lim x → 0 f ( x ) sin x x ϕ ( x ) = lim x → 0 f ( x ) ϕ ( x ) ⋅ sin x x = lim x → 0 f ( x ) ϕ ( x ) ⋅ 1 = 0 \lim_{x \to 0} \frac{f(x)\sin x}{x\phi(x)} = \lim_{x \to 0} \frac{f(x)}{\phi(x)} \cdot \frac{\sin x}{x} = \lim_{x \to 0} \frac{f(x)}{\phi(x)} \cdot 1 = 0 x → 0 lim x ϕ ( x ) f ( x ) sin x = x → 0 lim ϕ ( x ) f ( x ) ⋅ x sin x = x → 0 lim ϕ ( x ) f ( x ) ⋅ 1 = 0 故
∫ 0 x f ( t ) sin t d t \int_0^x f(t)\sin t\,dt ∫ 0 x f ( t ) sin t d t
是
∫ 0 x t ϕ ( t ) d t \int_0^x t\phi(t)\,dt ∫ 0 x tϕ ( t ) d t
的高阶无穷小。
7 同试卷 3 第 7 题
8 同试卷 3 第 8 题
9 非齐次线性方程组
A X = b AX = b A X = b
中未知量个数为
n n n
,方程个数为
m m m
,系数矩阵
A A A
的秩为
r r r
,则
查看答案与解析
收藏
正确答案:A 对于非齐次线性方程组
A X = b AX = b A X = b
,解存在的充要条件是系数矩阵
A A A
的秩等于增广矩阵
[ A ∣ b ] [A|b] [ A ∣ b ]
的秩。
选项 A 中,当
r = m r = m r = m
时,由于
A A A
的秩为
m m m
,且增广矩阵有
m m m
行,其秩最多为
m m m
,因此增广矩阵的秩也为
m m m
,即
r ( A ) = r ( [ A ∣ b ] ) r(A) = r([A|b]) r ( A ) = r ([ A ∣ b ])
,方程组有解。 选项 B 错误,因为
r = n r = n r = n
仅保证列满秩,但解可能不存在,例如当
b b b
不在
A A A
的列空间时。 选项 C 错误,因为
m = n m = n m = n
时,若
A A A
不可逆,方程组可能无解或有无穷多解。 选项 D 错误,因为
r < n r < n r < n
时,若增广矩阵的秩大于
r r r
,则方程组无解。 因此,只有选项 A 正确。
10 设
X X X
是一随机变量,
E X = μ EX = \mu EX = μ
,
D X = σ 2 DX = \sigma^2 D X = σ 2
(
μ \mu μ
,
σ > 0 \sigma > 0 σ > 0
是常数),则对任意常数
c c c
,必有
查看答案与解析
收藏
正确答案:D 对于任意常数
c c c
,有
E ( X − c ) 2 = E ( X 2 ) − 2 c μ + c 2 ,
E(X - c)^2 = E(X^2) - 2c\mu + c^2,
E ( X − c ) 2 = E ( X 2 ) − 2 c μ + c 2 , 而
E ( X − μ ) 2 = σ 2 .
E(X - \mu)^2 = \sigma^2.
E ( X − μ ) 2 = σ 2 . 计算差值:
E ( X − c ) 2 − E ( X − μ ) 2 = ( c − μ ) 2 ≥ 0 ,
E(X - c)^2 - E(X - \mu)^2 = (c - \mu)^2 \geq 0,
E ( X − c ) 2 − E ( X − μ ) 2 = ( c − μ ) 2 ≥ 0 , 因此
E ( X − c ) 2 ≥ E ( X − μ ) 2 ,
E(X - c)^2 \geq E(X - \mu)^2,
E ( X − c ) 2 ≥ E ( X − μ ) 2 , 等号当且仅当
c = μ c = \mu c = μ
时成立。
选项 A 错误,因为
E ( X − c ) 2 = E ( X 2 ) − 2 c μ + c 2 E(X - c)^2 = E(X^2) - 2c\mu + c^2 E ( X − c ) 2 = E ( X 2 ) − 2 c μ + c 2
,并非
E ( X 2 ) − c 2 E(X^2) - c^2 E ( X 2 ) − c 2
; 选项 B 错误,因为只有当
c = μ c = \mu c = μ
时相等; 选项 C 错误,因为
E ( X − c ) 2 E(X - c)^2 E ( X − c ) 2
从不小于
E ( X − μ ) 2 E(X - \mu)^2 E ( X − μ ) 2
。 故正确答案为 D。
解答题 11 求极限
lim x → 0 [ a x − ( 1 x 2 − a 2 ) ln ( 1 + a x ) ] \lim_{x \to 0} \left[\frac{a}{x} - \left(\frac{1}{x^2} - a^2 \right)\ln(1 + ax) \right] lim x → 0 [ x a − ( x 2 1 − a 2 ) ln ( 1 + a x ) ]
(
a ≠ 0 a \ne 0 a = 0
).
【答案】
a 2 2 \frac{a^2}{2} 2 a 2
【解析】
考虑极限
L = lim x → 0 [ a x − ( 1 x 2 − a 2 ) ln ( 1 + a x ) ] L = \lim_{x \to 0} \left[ \frac{a}{x} - \left( \frac{1}{x^2} - a^2 \right) \ln(1 + ax) \right] L = lim x → 0 [ x a − ( x 2 1 − a 2 ) ln ( 1 + a x ) ]
,其中
a ≠ 0 a \ne 0 a = 0
。 使用泰勒展开
ln ( 1 + a x ) = a x − ( a x ) 2 2 + ( a x ) 3 3 − ( a x ) 4 4 + ⋯ \ln(1 + ax) = ax - \frac{(ax)^2}{2} + \frac{(ax)^3}{3} - \frac{(ax)^4}{4} + \cdots ln ( 1 + a x ) = a x − 2 ( a x ) 2 + 3 ( a x ) 3 − 4 ( a x ) 4 + ⋯
,代入表达式:
( 1 x 2 − a 2 ) ln ( 1 + a x ) = ( 1 x 2 − a 2 ) ( a x − a 2 x 2 2 + a 3 x 3 3 − a 4 x 4 4 + ⋯ ) \left( \frac{1}{x^2} - a^2 \right) \ln(1 + ax) = \left( \frac{1}{x^2} - a^2 \right) \left( ax - \frac{a^2 x^2}{2} + \frac{a^3 x^3}{3} - \frac{a^4 x^4}{4} + \cdots \right) ( x 2 1 − a 2 ) ln ( 1 + a x ) = ( x 2 1 − a 2 ) ( a x − 2 a 2 x 2 + 3 a 3 x 3 − 4 a 4 x 4 + ⋯ ) 展开后:
= a x − a 3 x − a 2 2 + a 4 x 2 2 + a 3 x 3 − a 5 x 3 3 − a 4 x 2 4 + a 6 x 4 4 + ⋯ = \frac{a}{x} - a^3 x - \frac{a^2}{2} + \frac{a^4 x^2}{2} + \frac{a^3 x}{3} - \frac{a^5 x^3}{3} - \frac{a^4 x^2}{4} + \frac{a^6 x^4}{4} + \cdots = x a − a 3 x − 2 a 2 + 2 a 4 x 2 + 3 a 3 x − 3 a 5 x 3 − 4 a 4 x 2 + 4 a 6 x 4 + ⋯ 原表达式为:
a x − [ a x − a 3 x − a 2 2 + a 4 x 2 2 + a 3 x 3 − a 5 x 3 3 − a 4 x 2 4 + a 6 x 4 4 + ⋯ ] \frac{a}{x} - \left[ \frac{a}{x} - a^3 x - \frac{a^2}{2} + \frac{a^4 x^2}{2} + \frac{a^3 x}{3} - \frac{a^5 x^3}{3} - \frac{a^4 x^2}{4} + \frac{a^6 x^4}{4} + \cdots \right] x a − [ x a − a 3 x − 2 a 2 + 2 a 4 x 2 + 3 a 3 x − 3 a 5 x 3 − 4 a 4 x 2 + 4 a 6 x 4 + ⋯ ] 简化后:
a 3 x + a 2 2 − a 4 x 2 2 − a 3 x 3 + a 5 x 3 3 + a 4 x 2 4 − a 6 x 4 4 + ⋯ a^3 x + \frac{a^2}{2} - \frac{a^4 x^2}{2} - \frac{a^3 x}{3} + \frac{a^5 x^3}{3} + \frac{a^4 x^2}{4} - \frac{a^6 x^4}{4} + \cdots a 3 x + 2 a 2 − 2 a 4 x 2 − 3 a 3 x + 3 a 5 x 3 + 4 a 4 x 2 − 4 a 6 x 4 + ⋯ 当
x → 0 x \to 0 x → 0
时,所有含
x x x
的项趋近于零,仅剩常数项
a 2 2 \frac{a^2}{2} 2 a 2
。因此极限为
a 2 2 \frac{a^2}{2} 2 a 2
。
或者,令
t = a x t = ax t = a x
,则当
x → 0 x \to 0 x → 0
时
t → 0 t \to 0 t → 0
,原式化为:
L = a 2 lim t → 0 [ 1 t − ( 1 t 2 − 1 ) ln ( 1 + t ) ] L = a^2 \lim_{t \to 0} \left[ \frac{1}{t} - \left( \frac{1}{t^2} - 1 \right) \ln(1 + t) \right] L = a 2 t → 0 lim [ t 1 − ( t 2 1 − 1 ) ln ( 1 + t ) ] 计算内极限:
lim t → 0 [ 1 t − 1 t 2 ln ( 1 + t ) + ln ( 1 + t ) ] \lim_{t \to 0} \left[ \frac{1}{t} - \frac{1}{t^2} \ln(1 + t) + \ln(1 + t) \right] t → 0 lim [ t 1 − t 2 1 ln ( 1 + t ) + ln ( 1 + t ) ] 利用
ln ( 1 + t ) = t − t 2 2 + t 3 3 − ⋯ \ln(1 + t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \cdots ln ( 1 + t ) = t − 2 t 2 + 3 t 3 − ⋯
,有:
1 t 2 ln ( 1 + t ) = 1 t − 1 2 + t 3 − ⋯ \frac{1}{t^2} \ln(1 + t) = \frac{1}{t} - \frac{1}{2} + \frac{t}{3} - \cdots t 2 1 ln ( 1 + t ) = t 1 − 2 1 + 3 t − ⋯ 所以:
1 t − 1 t 2 ln ( 1 + t ) = 1 2 − t 3 + ⋯ \frac{1}{t} - \frac{1}{t^2} \ln(1 + t) = \frac{1}{2} - \frac{t}{3} + \cdots t 1 − t 2 1 ln ( 1 + t ) = 2 1 − 3 t + ⋯ 加上
ln ( 1 + t ) = t − t 2 2 + ⋯ \ln(1 + t) = t - \frac{t^2}{2} + \cdots ln ( 1 + t ) = t − 2 t 2 + ⋯
,得:
( 1 2 − t 3 + ⋯ ) + ( t − t 2 2 + ⋯ ) = 1 2 + 2 3 t + ⋯ \left( \frac{1}{2} - \frac{t}{3} + \cdots \right) + \left( t - \frac{t^2}{2} + \cdots \right) = \frac{1}{2} + \frac{2}{3} t + \cdots ( 2 1 − 3 t + ⋯ ) + ( t − 2 t 2 + ⋯ ) = 2 1 + 3 2 t + ⋯ 当
t → 0 t \to 0 t → 0
时,内极限为
1 2 \frac{1}{2} 2 1
,故
L = a 2 ⋅ 1 2 = a 2 2 L = a^2 \cdot \frac{1}{2} = \frac{a^2}{2} L = a 2 ⋅ 2 1 = 2 a 2
。 两种方法均得极限为
a 2 2 \frac{a^2}{2} 2 a 2
。
12 同试卷 3 第 12 题
13 假设某种商品的需求量
Q Q Q
是单价
p p p
(单位:元)的函数:
Q = 12000 − 80 p Q = 12000 - 80p Q = 12000 − 80 p
;
商品的总成本
C C C
是需求量
Q Q Q
的函数:
C = 25000 + 50 Q C = 25000 + 50Q C = 25000 + 50 Q
;
每单位商品需要纳税
2 2 2
元.试求使销售利润最大的商品单价和最大利润额.
【答案】 商品单价为101元,最大利润额为167080元。
【解析】 利润函数为
L = p Q − C − 2 Q L = pQ - C - 2Q L = pQ − C − 2 Q
,其中
Q = 12000 − 80 p Q = 12000 - 80p Q = 12000 − 80 p
,
C = 25000 + 50 Q C = 25000 + 50Q C = 25000 + 50 Q
。 代入得:
L = p ( 12000 − 80 p ) − ( 25000 + 50 Q ) − 2 ( 12000 − 80 p ) L = p(12000 - 80p) - (25000 + 50Q) - 2(12000 - 80p) L = p ( 12000 − 80 p ) − ( 25000 + 50 Q ) − 2 ( 12000 − 80 p ) 简化后:
L = − 80 p 2 + 16160 p − 649000 L = -80p^2 + 16160p - 649000 L = − 80 p 2 + 16160 p − 649000 这是一个二次函数,开口向下,最大值在顶点处。顶点坐标为
p = − b 2 a = − 16160 2 × ( − 80 ) = 101 p = -\frac{b}{2a} = -\frac{16160}{2 \times (-80)} = 101 p = − 2 a b = − 2 × ( − 80 ) 16160 = 101
。 代入
p = 101 p = 101 p = 101
得最大利润:
L = − 80 × 101 2 + 16160 × 101 − 649000 = 167080 L = -80 \times 101^2 + 16160 \times 101 - 649000 = 167080 L = − 80 × 10 1 2 + 16160 × 101 − 649000 = 167080 因此,商品单价为101元时,利润最大,最大利润额为167080元。
14 求曲线
y = x 2 − 2 x y = x^2 - 2x y = x 2 − 2 x
,
y = 0 y = 0 y = 0
,
x = 1 x = 1 x = 1
,
x = 3 x = 3 x = 3
所围成的平面图形的面积
S S S
,
并求该平面图形绕
y y y
轴旋转一周所得旋转体的体积
V V V
.
【答案】 面积
S = 2 S = 2 S = 2
,体积
V = 9 π V = 9\pi V = 9 π
。
【解析】 求面积
S S S
:曲线
y = x 2 − 2 x y = x^2 - 2x y = x 2 − 2 x
与
y = 0 y = 0 y = 0
(即
x x x
轴)以及直线
x = 1 x = 1 x = 1
、
x = 3 x = 3 x = 3
所围成的图形在区间
[ 1 , 3 ] [1, 3] [ 1 , 3 ]
上部分位于
x x x
轴下方。因此,面积需取绝对值积分:
S = ∫ 1 3 ∣ x 2 − 2 x ∣ d x S = \int_{1}^{3} |x^2 - 2x| \, dx S = ∫ 1 3 ∣ x 2 − 2 x ∣ d x 在区间
[ 1 , 2 ] [1, 2] [ 1 , 2 ]
上,
x 2 − 2 x < 0 x^2 - 2x < 0 x 2 − 2 x < 0
,故
∣ x 2 − 2 x ∣ = 2 x − x 2 |x^2 - 2x| = 2x - x^2 ∣ x 2 − 2 x ∣ = 2 x − x 2
;在区间
[ 2 , 3 ] [2, 3] [ 2 , 3 ]
上,
x 2 − 2 x > 0 x^2 - 2x > 0 x 2 − 2 x > 0
,故
∣ x 2 − 2 x ∣ = x 2 − 2 x |x^2 - 2x| = x^2 - 2x ∣ x 2 − 2 x ∣ = x 2 − 2 x
。 于是:
S = ∫ 1 2 ( 2 x − x 2 ) d x + ∫ 2 3 ( x 2 − 2 x ) d x S = \int_{1}^{2} (2x - x^2) \, dx + \int_{2}^{3} (x^2 - 2x) \, dx S = ∫ 1 2 ( 2 x − x 2 ) d x + ∫ 2 3 ( x 2 − 2 x ) d x 计算第一积分:
∫ 1 2 ( 2 x − x 2 ) d x = [ x 2 − x 3 3 ] 1 2 = ( 4 − 8 3 ) − ( 1 − 1 3 ) = 4 3 − 2 3 = 2 3 \int_{1}^{2} (2x - x^2) \, dx = \left[ x^2 - \frac{x^3}{3} \right]_{1}^{2} = \left(4 - \frac{8}{3}\right) - \left(1 - \frac{1}{3}\right) = \frac{4}{3} - \frac{2}{3} = \frac{2}{3} ∫ 1 2 ( 2 x − x 2 ) d x = [ x 2 − 3 x 3 ] 1 2 = ( 4 − 3 8 ) − ( 1 − 3 1 ) = 3 4 − 3 2 = 3 2 计算第二积分:
∫ 2 3 ( x 2 − 2 x ) d x = [ x 3 3 − x 2 ] 2 3 = ( 9 − 9 ) − ( 8 3 − 4 ) = 0 − ( − 4 3 ) = 4 3 \int_{2}^{3} (x^2 - 2x) \, dx = \left[ \frac{x^3}{3} - x^2 \right]_{2}^{3} = \left(9 - 9\right) - \left(\frac{8}{3} - 4\right) = 0 - \left(-\frac{4}{3}\right) = \frac{4}{3} ∫ 2 3 ( x 2 − 2 x ) d x = [ 3 x 3 − x 2 ] 2 3 = ( 9 − 9 ) − ( 3 8 − 4 ) = 0 − ( − 3 4 ) = 3 4 所以:
S = 2 3 + 4 3 = 2 S = \frac{2}{3} + \frac{4}{3} = 2 S = 3 2 + 3 4 = 2 求体积
V V V
:该平面图形绕
y y y
轴旋转一周,使用柱壳法,体积公式为:
V = 2 π ∫ 1 3 x ⋅ ∣ x 2 − 2 x ∣ d x V = 2\pi \int_{1}^{3} x \cdot |x^2 - 2x| \, dx V = 2 π ∫ 1 3 x ⋅ ∣ x 2 − 2 x ∣ d x 同样分段计算:
V = 2 π [ ∫ 1 2 x ( 2 x − x 2 ) d x + ∫ 2 3 x ( x 2 − 2 x ) d x ] V = 2\pi \left[ \int_{1}^{2} x (2x - x^2) \, dx + \int_{2}^{3} x (x^2 - 2x) \, dx \right] V = 2 π [ ∫ 1 2 x ( 2 x − x 2 ) d x + ∫ 2 3 x ( x 2 − 2 x ) d x ] 计算第一积分:
∫ 1 2 x ( 2 x − x 2 ) d x = ∫ 1 2 ( 2 x 2 − x 3 ) d x = [ 2 3 x 3 − 1 4 x 4 ] 1 2 = ( 16 3 − 4 ) − ( 2 3 − 1 4 ) = 4 3 − 5 12 = 11 12
\begin{align*}
\int_{1}^{2} x (2x - x^2) \, dx
&= \int_{1}^{2} (2x^2 - x^3) \, dx \\
&= \left[ \frac{2}{3}x^3 - \frac{1}{4}x^4 \right]_{1}^{2} \\
&= \left( \frac{16}{3} - 4 \right) - \left( \frac{2}{3} - \frac{1}{4} \right) \\
&= \frac{4}{3} - \frac{5}{12} \\
&= \frac{11}{12}
\end{align*}
∫ 1 2 x ( 2 x − x 2 ) d x = ∫ 1 2 ( 2 x 2 − x 3 ) d x = [ 3 2 x 3 − 4 1 x 4 ] 1 2 = ( 3 16 − 4 ) − ( 3 2 − 4 1 ) = 3 4 − 12 5 = 12 11 计算第二积分:
∫ 2 3 x ( x 2 − 2 x ) d x = ∫ 2 3 ( x 3 − 2 x 2 ) d x = [ 1 4 x 4 − 2 3 x 3 ] 2 3 = ( 81 4 − 18 ) − ( 4 − 16 3 ) = 9 4 − ( − 4 3 ) = 9 4 + 4 3 = 43 12
\begin{align*}
\int_{2}^{3} x (x^2 - 2x) \, dx
&= \int_{2}^{3} (x^3 - 2x^2) \, dx \\
&= \left[ \frac{1}{4}x^4 - \frac{2}{3}x^3 \right]_{2}^{3} \\
&= \left( \frac{81}{4} - 18 \right) - \left( 4 - \frac{16}{3} \right) \\
&= \frac{9}{4} - \left( -\frac{4}{3} \right) \\
&= \frac{9}{4} + \frac{4}{3} \\
&= \frac{43}{12}
\end{align*}
∫ 2 3 x ( x 2 − 2 x ) d x = ∫ 2 3 ( x 3 − 2 x 2 ) d x = [ 4 1 x 4 − 3 2 x 3 ] 2 3 = ( 4 81 − 18 ) − ( 4 − 3 16 ) = 4 9 − ( − 3 4 ) = 4 9 + 3 4 = 12 43 所以:
V = 2 π ( 11 12 + 43 12 ) = 2 π ⋅ 54 12 = 2 π ⋅ 9 2 = 9 π V = 2\pi \left( \frac{11}{12} + \frac{43}{12} \right) = 2\pi \cdot \frac{54}{12} = 2\pi \cdot \frac{9}{2} = 9\pi V = 2 π ( 12 11 + 12 43 ) = 2 π ⋅ 12 54 = 2 π ⋅ 2 9 = 9 π 15 设函数
f ( x ) f(x) f ( x )
在
( − ∞ , + ∞ ) (-\infty , +\infty) ( − ∞ , + ∞ )
内连续,且
F ( x ) = ∫ 0 x ( x − 2 t ) f ( t ) d t F(x) = \int_0^x (x - 2t) f(t)\dt F ( x ) = ∫ 0 x ( x − 2 t ) f ( t ) d t
.试证:
(1) 若
f ( x ) f(x) f ( x )
为偶函数,则
F ( x ) F(x) F ( x )
也是偶函数;
(2) 若
f ( x ) f(x) f ( x )
单调不增,则
F ( x ) F(x) F ( x )
单调不减.
【答案】 见解析
【解析】 (Ⅰ) 令
t = − u t = -u t = − u
,有
F ( − x ) = ∫ 0 − x ( − x − 2 t ) f ( t ) d t = − ∫ 0 x ( − x + 2 u ) f ( − u ) d u F(-x) = \int_{0}^{-x} (-x-2t)f(t)dt = -\int_{0}^{x} (-x+2u)f(-u)du F ( − x ) = ∫ 0 − x ( − x − 2 t ) f ( t ) d t = − ∫ 0 x ( − x + 2 u ) f ( − u ) d u 即
F ( x ) F(x) F ( x )
为偶函数。
(Ⅱ) 由积分中值定理,存在
ξ \xi ξ
介于 0 和
x x x
之间,使得
F ′ ( x ) = ∫ 0 x f ( t ) d t − x f ( x ) = x [ f ( ξ ) − f ( x ) ] . F'(x) = \int_{0}^{x} f(t)dt - xf(x) = x[f(\xi) - f(x)]. F ′ ( x ) = ∫ 0 x f ( t ) d t − x f ( x ) = x [ f ( ξ ) − f ( x )] . 由已知
f ( x ) f(x) f ( x )
单调不减,可见
当
x > 0 x > 0 x > 0
时,
f ( ξ ) − f ( x ) ≥ 0 f(\xi) - f(x) \geq 0 f ( ξ ) − f ( x ) ≥ 0
,故
F ′ ( x ) ≥ 0 F'(x) \geq 0 F ′ ( x ) ≥ 0
; 当
x = 0 x = 0 x = 0
时,显然
F ′ ( x ) = 0 F'(x) = 0 F ′ ( x ) = 0
; 当
x < 0 x < 0 x < 0
时,
f ( ξ ) − f ( x ) ≤ 0 f(\xi) - f(x) \leq 0 f ( ξ ) − f ( x ) ≤ 0
,故
F ′ ( x ) ≥ 0 F'(x) \geq 0 F ′ ( x ) ≥ 0
。
总之,当
x ∈ ( − ∞ , + ∞ ) x \in (-\infty, +\infty) x ∈ ( − ∞ , + ∞ )
时,总有
F ′ ( x ) ≥ 0 F'(x) \geq 0 F ′ ( x ) ≥ 0
,从而
F ( x ) F(x) F ( x )
单调不减。
16 设
D D D
是以点
O ( 0 , 0 ) O(0,0) O ( 0 , 0 )
,
A ( 1 , 2 ) A(1,2) A ( 1 , 2 )
和
B ( 2 , 1 ) B(2,1) B ( 2 , 1 )
为顶点的三角形区域,求
∬ D x d x d y \iint_Dx\dx\dy ∬ D x d x d y
.
【答案】
3 2 \frac{3}{2} 2 3
【解析】
三角形区域
D D D
由点
O ( 0 , 0 ) O(0,0) O ( 0 , 0 )
、
A ( 1 , 2 ) A(1,2) A ( 1 , 2 )
和
B ( 2 , 1 ) B(2,1) B ( 2 , 1 )
围成。边界直线为:从
O O O
到
A A A
的
y = 2 x y = 2x y = 2 x
,从
O O O
到
B B B
的
y = 1 2 x y = \frac{1}{2}x y = 2 1 x
,以及从
A A A
到
B B B
的
y = − x + 3 y = -x + 3 y = − x + 3
。为计算二重积分
∬ D x d x d y \iint_D x \, dx \, dy ∬ D x d x d y
,将区域按
x x x
分为两部分:当
x x x
从
0 0 0
到
1 1 1
时,
y y y
从
1 2 x \frac{1}{2}x 2 1 x
到
2 x 2x 2 x
;当
x x x
从
1 1 1
到
2 2 2
时,
y y y
从
1 2 x \frac{1}{2}x 2 1 x
到
− x + 3 -x + 3 − x + 3
。于是:
∬ D x d x d y = ∫ 0 1 ∫ 1 2 x 2 x x d y d x + ∫ 1 2 ∫ 1 2 x − x + 3 x d y d x . \iint_D x \, dx \, dy = \int_{0}^{1} \int_{\frac{1}{2}x}^{2x} x \, dy \, dx + \int_{1}^{2} \int_{\frac{1}{2}x}^{-x+3} x \, dy \, dx. ∬ D x d x d y = ∫ 0 1 ∫ 2 1 x 2 x x d y d x + ∫ 1 2 ∫ 2 1 x − x + 3 x d y d x . 计算第一部分:
∫ 0 1 ∫ 1 2 x 2 x x d y d x = ∫ 0 1 x [ y ] 1 2 x 2 x d x = ∫ 0 1 x ( 2 x − 1 2 x ) d x = ∫ 0 1 x ⋅ 3 2 x d x = ∫ 0 1 3 2 x 2 d x = 3 2 [ 1 3 x 3 ] 0 1 = 3 2 ⋅ 1 3 = 1 2 .
\begin{align*}
\int_{0}^{1} \int_{\frac{1}{2}x}^{2x} x \, dy \, dx
&= \int_{0}^{1} x \left[ y \right]_{\frac{1}{2}x}^{2x} \, dx = \int_{0}^{1} x \left( 2x - \frac{1}{2}x \right) \, dx \\
&= \int_{0}^{1} x \cdot \frac{3}{2}x \, dx = \int_{0}^{1} \frac{3}{2}x^2 \, dx \\
&= \frac{3}{2} \left[ \frac{1}{3}x^3 \right]_{0}^{1} = \frac{3}{2} \cdot \frac{1}{3} \\
&= \frac{1}{2}.
\end{align*}
∫ 0 1 ∫ 2 1 x 2 x x d y d x = ∫ 0 1 x [ y ] 2 1 x 2 x d x = ∫ 0 1 x ( 2 x − 2 1 x ) d x = ∫ 0 1 x ⋅ 2 3 x d x = ∫ 0 1 2 3 x 2 d x = 2 3 [ 3 1 x 3 ] 0 1 = 2 3 ⋅ 3 1 = 2 1 . 计算第二部分:
∫ 1 2 ∫ 1 2 x − x + 3 x d y d x = ∫ 1 2 x [ y ] 1 2 x − x + 3 d x = ∫ 1 2 x ( − x + 3 − 1 2 x ) d x = ∫ 1 2 x ( − 3 2 x + 3 ) d x = ∫ 1 2 ( − 3 2 x 2 + 3 x ) d x .
\begin{align*}
\int_{1}^{2} \int_{\frac{1}{2}x}^{-x+3} x \, dy \, dx
&= \int_{1}^{2} x \left[ y \right]_{\frac{1}{2}x}^{-x+3} \, dx \\
&= \int_{1}^{2} x \left( -x + 3 - \frac{1}{2}x \right) \, dx \\
&= \int_{1}^{2} x \left( -\frac{3}{2}x + 3 \right) \, dx \\
&= \int_{1}^{2} \left( -\frac{3}{2}x^2 + 3x \right) \, dx.
\end{align*}
∫ 1 2 ∫ 2 1 x − x + 3 x d y d x = ∫ 1 2 x [ y ] 2 1 x − x + 3 d x = ∫ 1 2 x ( − x + 3 − 2 1 x ) d x = ∫ 1 2 x ( − 2 3 x + 3 ) d x = ∫ 1 2 ( − 2 3 x 2 + 3 x ) d x . 求积分:
∫ 1 2 ( − 3 2 x 2 + 3 x ) d x = [ − 1 2 x 3 + 3 2 x 2 ] 1 2 = ( − 1 2 ( 8 ) + 3 2 ( 4 ) ) − ( − 1 2 ( 1 ) + 3 2 ( 1 ) ) = ( − 4 + 6 ) − ( − 0.5 + 1.5 ) = 2 − 1 = 1.
\begin{align*}
\int_{1}^{2} \left( -\frac{3}{2}x^2 + 3x \right) \, dx
&= \left[ -\frac{1}{2}x^3 + \frac{3}{2}x^2 \right]_{1}^{2} \\
&= \left( -\frac{1}{2}(8) + \frac{3}{2}(4) \right) - \left( -\frac{1}{2}(1) + \frac{3}{2}(1) \right) \\
&= (-4 + 6) - (-0.5 + 1.5) \\
&= 2 - 1 \\
&= 1.
\end{align*}
∫ 1 2 ( − 2 3 x 2 + 3 x ) d x = [ − 2 1 x 3 + 2 3 x 2 ] 1 2 = ( − 2 1 ( 8 ) + 2 3 ( 4 ) ) − ( − 2 1 ( 1 ) + 2 3 ( 1 ) ) = ( − 4 + 6 ) − ( − 0.5 + 1.5 ) = 2 − 1 = 1. 因此,总积分为:
1 2 + 1 = 3 2 . \frac{1}{2} + 1 = \frac{3}{2}. 2 1 + 1 = 2 3 . 或者,利用质心性质:三角形面积為
1 2 ∣ det ( 1 2 2 1 ) ∣ = 1 2 ∣ 1 ⋅ 1 − 2 ⋅ 2 ∣ = 1 2 ⋅ 3 = 3 2 \frac{1}{2} \left| \det \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right| = \frac{1}{2} |1 \cdot 1 - 2 \cdot 2| = \frac{1}{2} \cdot 3 = \frac{3}{2} 2 1 det ( 1 2 2 1 ) = 2 1 ∣1 ⋅ 1 − 2 ⋅ 2∣ = 2 1 ⋅ 3 = 2 3
,质心
x x x
坐标为
0 + 1 + 2 3 = 1 \frac{0+1+2}{3} = 1 3 0 + 1 + 2 = 1
,故
∬ D x d x d y = x × = 1 × 3 2 = 3 2 \iint_D x \, dx \, dy = \text{} x \times \text{} = 1 \times \frac{3}{2} = \frac{3}{2} ∬ D x d x d y = x × = 1 × 2 3 = 2 3
。两种方法结果一致。
17 同试卷 3 第 17 题
18 设矩阵
A A A
和
B B B
相似,且
A = ( 1 − 1 1 2 4 − 2 − 3 − 3 a ) A = \begin{pmatrix}
1 & - 1 & 1 \\
2 & 4 & - 2 \\ -3 & - 3 & a
\end{pmatrix} A = 1 2 − 3 − 1 4 − 3 1 − 2 a
,
B = ( 2 0 0 0 2 0 0 0 b ) B = \begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & b
\end{pmatrix} B = 2 0 0 0 2 0 0 0 b
,
(1) 求
a a a
,
b b b
的值;
(2) 求可逆矩阵
P P P
,使
P − 1 A P = B P^{-1} AP = B P − 1 A P = B
.
【答案】 (1)
a = 5 a=5 a = 5
,
b = 6 b=6 b = 6 (2) 可逆矩阵
P = ( 1 0 − 1 0 1 2 1 1 − 3 ) P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & -3 \end{pmatrix} P = 1 0 1 0 1 1 − 1 2 − 3
。(
P P P
的取法不唯一,只要列向量是对应特征值的线性无关特征向量即可)
【解析】 矩阵
A A A
与
B B B
相似,则它们有相同的特征多项式。
(1) 求
a a a
,
b b b
的值
计算
A A A
的特征多项式:
det ( λ I − A ) = ∣ λ − 1 1 − 1 − 2 λ − 4 2 3 3 λ − a ∣ = λ 3 − ( a + 5 ) λ 2 + ( 5 a + 3 ) λ + ( − 6 a + 6 ) .
\det(\lambda I - A) =
\begin{vmatrix}
\lambda - 1 & 1 & -1 \\
-2 & \lambda - 4 & 2 \\
3 & 3 & \lambda - a
\end{vmatrix} = \lambda^3 - (a+5)\lambda^2 + (5a+3)\lambda + (-6a+6).
det ( λ I − A ) = λ − 1 − 2 3 1 λ − 4 3 − 1 2 λ − a = λ 3 − ( a + 5 ) λ 2 + ( 5 a + 3 ) λ + ( − 6 a + 6 ) . B B B
的特征多项式为:
det ( λ I − B ) = ( λ − 2 ) 2 ( λ − b ) = λ 3 − ( b + 4 ) λ 2 + ( 4 b + 4 ) λ − 4 b .
\det(\lambda I - B) = (\lambda-2)^2(\lambda-b) = \lambda^3 - (b+4)\lambda^2 + (4b+4)\lambda - 4b.
det ( λ I − B ) = ( λ − 2 ) 2 ( λ − b ) = λ 3 − ( b + 4 ) λ 2 + ( 4 b + 4 ) λ − 4 b . 比较系数得:
{ a + 5 = b + 4 , 5 a + 3 = 4 b + 4 , − 6 a + 6 = − 4 b .
\begin{cases}
a+5 = b+4, \\
5a+3 = 4b+4, \\
-6a+6 = -4b.
\end{cases}
⎩ ⎨ ⎧ a + 5 = b + 4 , 5 a + 3 = 4 b + 4 , − 6 a + 6 = − 4 b . 解得
a = 5 a = 5 a = 5
,
b = 6 b = 6 b = 6
。
因此,
a = 5 \boxed{a=5} a = 5
,
b = 6 \boxed{b=6} b = 6
。
(2) 求可逆矩阵
P P P
当
a = 5 a=5 a = 5
,
b = 6 b=6 b = 6
时,
A = ( 1 − 1 1 2 4 − 2 − 3 − 3 5 ) , B = ( 2 0 0 0 2 0 0 0 6 ) .
A = \begin{pmatrix}
1 & -1 & 1 \\
2 & 4 & -2 \\
-3 & -3 & 5
\end{pmatrix},
\quad
B = \begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{pmatrix}.
A = 1 2 − 3 − 1 4 − 3 1 − 2 5 , B = 2 0 0 0 2 0 0 0 6 . 求
A A A
的特征值与特征向量:
特征值
λ 1 = 2 \lambda_1 = 2 λ 1 = 2
(二重),解
( A − 2 I ) x = 0 (A-2I)x=0 ( A − 2 I ) x = 0
:
A − 2 I = ( − 1 − 1 1 2 2 − 2 − 3 − 3 3 ) → ( 1 1 − 1 0 0 0 0 0 0 ) ,
A-2I = \begin{pmatrix}
-1 & -1 & 1 \\
2 & 2 & -2 \\
-3 & -3 & 3
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix},
A − 2 I = − 1 2 − 3 − 1 2 − 3 1 − 2 3 → 1 0 0 1 0 0 − 1 0 0 , 得基础解系:
ξ 1 = ( 1 0 1 ) , ξ 2 = ( 0 1 1 ) .
\xi_1 = \begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix},\quad
\xi_2 = \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix}.
ξ 1 = 1 0 1 , ξ 2 = 0 1 1 . 特征值
λ 2 = 6 \lambda_2 = 6 λ 2 = 6
,解
( A − 6 I ) x = 0 (A-6I)x=0 ( A − 6 I ) x = 0
:
A − 6 I = ( − 5 − 1 1 2 − 2 − 2 − 3 − 3 − 1 ) → ( 1 0 1 2 0 1 3 2 0 0 0 ) ,
A-6I = \begin{pmatrix}
-5 & -1 & 1 \\
2 & -2 & -2 \\
-3 & -3 & -1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & \frac{1}{2} \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 0
\end{pmatrix},
A − 6 I = − 5 2 − 3 − 1 − 2 − 3 1 − 2 − 1 → 1 0 0 0 1 0 2 1 2 3 0 , 得基础解系:
ξ 3 = ( − 1 2 − 3 ) .
\xi_3 = \begin{pmatrix}-1 \\ 2 \\ -3\end{pmatrix}.
ξ 3 = − 1 2 − 3 . 取
P = ( ξ 1 , ξ 2 , ξ 3 ) = ( 1 0 − 1 0 1 2 1 1 − 3 ) ,
P = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 2 \\
1 & 1 & -3
\end{pmatrix},
P = ( ξ 1 , ξ 2 , ξ 3 ) = 1 0 1 0 1 1 − 1 2 − 3 , 则
P P P
可逆,且满足
P − 1 A P = B P^{-1}AP = B P − 1 A P = B
。
因此,可逆矩阵
P = ( 1 0 − 1 0 1 2 1 1 − 3 ) P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & -3 \end{pmatrix} P = 1 0 1 0 1 1 − 1 2 − 3
。
19 假设随机变量
X X X
的绝对值不大于
1 1 1
;
P { X = − 1 } = 1 8 , P { X = 1 } = 1 4 P\{X = - 1\} = \frac{1}{8},P\{X = 1\} = \frac{1}{4} P { X = − 1 } = 8 1 , P { X = 1 } = 4 1
;
在事件
{ − 1 < X < 1 } \{- 1 < X < 1\} { − 1 < X < 1 }
出现的条件下,
X X X
在
( − 1 , 1 ) (- 1,1) ( − 1 , 1 )
内的任一子区间上取值的条件概率与该子区间长度成正比.
试求:
(1)
X X X
的分布函数
F ( x ) = P { X ≤ x } F(x) = P\{X \le x\} F ( x ) = P { X ≤ x }
;
(2)
X X X
取负值的概率
p p p
.
【答案】 (1)
X X X
的分布函数为:
F ( x ) = { 0 x < − 1 5 x + 7 16 − 1 ≤ x < 1 1 x ≥ 1 F(x) =
\begin{cases}
0 & \text{ } x < -1 \\
\frac{5x + 7}{16} & \text{ } -1 \le x < 1 \\
1 & \text{ } x \geq 1
\end{cases} F ( x ) = ⎩ ⎨ ⎧ 0 16 5 x + 7 1 x < − 1 − 1 ≤ x < 1 x ≥ 1 (2)
X X X
取负值的概率
p = 7 16 p = \frac{7}{16} p = 16 7
。
【解析】 (1) 由
X X X
的绝对值不大于 1,可得:当
x < − 1 x<-1 x < − 1
时,
F ( x ) = P { X ≤ x } = 0 F(x)=P\{X \leq x\}=0 F ( x ) = P { X ≤ x } = 0
; 当
x ≥ 1 x \geq 1 x ≥ 1
时,
F ( x ) = P { X ≤ x } = 1 F(x)=P\{X \leq x\}=1 F ( x ) = P { X ≤ x } = 1
。又
P { X = − 1 } = 1 8 , P { X = 1 } = 1 4 P\{X=-1\}=\frac{1}{8}, P\{X=1\}=\frac{1}{4} P { X = − 1 } = 8 1 , P { X = 1 } = 4 1
,则
P { − 1 < x < 1 } = 1 − P { X = − 1 } − P { X = 1 } = 1 − 1 8 − 1 4 = 5 8 . P\{-1<x<1\}=1-P\{X=-1\}-P\{X=1\}=1-\frac{1}{8}-\frac{1}{4}=\frac{5}{8}. P { − 1 < x < 1 } = 1 − P { X = − 1 } − P { X = 1 } = 1 − 8 1 − 4 1 = 8 5 . 由题意
X X X
在
( − 1 , 1 ) (-1,1) ( − 1 , 1 )
内的任一子区间上取值的条件概率与该子区间长度成正比,那么当
X X X
的值属于
( − 1 , 1 ) (-1,1) ( − 1 , 1 )
的条件下,事件
{ − 1 < X ≤ x } \{-1<X\leq x\} { − 1 < X ≤ x }
的条件概率为:
P { − 1 < X ≤ x ∣ − 1 < X < 1 } = k x − ( − 1 ) 1 − ( − 1 ) = k x + 1 2 , P\{-1<X\leq x|-1<X<1\}=k\frac{x-(-1)}{1-(-1)}=k\frac{x+1}{2}, P { − 1 < X ≤ x ∣ − 1 < X < 1 } = k 1 − ( − 1 ) x − ( − 1 ) = k 2 x + 1 , 其中
k k k
为比例正常数。又
P { − 1 < X < 1 ∣ − 1 < X < 1 } = 1 P\{-1<X<1|-1<X<1\}=1 P { − 1 < X < 1∣ − 1 < X < 1 } = 1
,而
P { − 1 < X < 1 ∣ − 1 < X < 1 } = k 1 + 1 2 = k , P\{-1<X<1|-1<X<1\}=k\frac{1+1}{2}=k, P { − 1 < X < 1∣ − 1 < X < 1 } = k 2 1 + 1 = k , 所以
k = 1 k=1 k = 1
,故
P { − 1 < X ≤ x ∣ − 1 < X < 1 } = x + 1 2 . P\{-1<X\leq x|-1<X<1\}=\frac{x+1}{2}. P { − 1 < X ≤ x ∣ − 1 < X < 1 } = 2 x + 1 . 当
− 1 < x < 1 -1<x<1 − 1 < x < 1
时,
{ − 1 < X ≤ x } = { − 1 < X ≤ x } ∩ { − 1 < X < 1 } \{-1<X\leq x\}=\{-1<X\leq x\}\cap\{-1<X<1\} { − 1 < X ≤ x } = { − 1 < X ≤ x } ∩ { − 1 < X < 1 }
,所以
P { − 1 < X ≤ x } = P { − 1 < X ≤ x , − 1 < X < 1 } . P\{-1<X\leq x\}=P\{-1<X\leq x,-1<X<1\}. P { − 1 < X ≤ x } = P { − 1 < X ≤ x , − 1 < X < 1 } . 由条件概率公式,有
P { − 1 < X ≤ x } = P { − 1 < X ≤ x , − 1 < X < 1 } P\{-1<X\leq x\}=P\{-1<X\leq x,-1<X<1\} P { − 1 < X ≤ x } = P { − 1 < X ≤ x , − 1 < X < 1 }
= P { − 1 < X ≤ x ∣ − 1 < X < 1 } P { − 1 < X < 1 } =P\{-1<X\leq x|-1<X<1\}P\{-1<X<1\} = P { − 1 < X ≤ x ∣ − 1 < X < 1 } P { − 1 < X < 1 }
= x + 1 2 × 5 8 = 5 x + 5 16 , =\frac{x+1}{2}\times\frac{5}{8}=\frac{5x+5}{16}, = 2 x + 1 × 8 5 = 16 5 x + 5 ,
F ( x ) = P { X ≤ x } = P { X ≤ − 1 } + P { − 1 < X ≤ x } , F(x)=P\{X\leq x\}=P\{X\leq -1\}+P\{-1<X\leq x\}, F ( x ) = P { X ≤ x } = P { X ≤ − 1 } + P { − 1 < X ≤ x } , 而
P { X ≤ − 1 } = P { X = − 1 } + P { X < − 1 } = 1 8 + 0 = 1 8 , P\{X\leq -1\}=P\{X=-1\}+P\{X<-1\}=\frac{1}{8}+0=\frac{1}{8}, P { X ≤ − 1 } = P { X = − 1 } + P { X < − 1 } = 8 1 + 0 = 8 1 , 所以
F ( x ) = P { X ≤ x } = P { X ≤ − 1 } + P { − 1 < X ≤ x } = 1 8 + 5 x + 5 16 = 5 x + 7 16 , F(x)=P\{X\leq x\}=P\{X\leq -1\}+P\{-1<X\leq x\}=\frac{1}{8}+\frac{5x+5}{16}=\frac{5x+7}{16}, F ( x ) = P { X ≤ x } = P { X ≤ − 1 } + P { − 1 < X ≤ x } = 8 1 + 16 5 x + 5 = 16 5 x + 7 , 故所求的
X X X
的分布函数为
F ( x ) = { 0 , x < − 1 ; 5 x + 7 16 , − 1 ≤ x < 1 ; 1 , x ≥ 1. F(x)=\begin{cases}
0, & x<-1; \\
\frac{5x+7}{16}, & -1\leq x<1; \\
1, & x\geq 1.
\end{cases} F ( x ) = ⎩ ⎨ ⎧ 0 , 16 5 x + 7 , 1 , x < − 1 ; − 1 ≤ x < 1 ; x ≥ 1. (II)
X X X
取负值的概率
p = P { X < 0 } = F ( 0 ) − P { X = 0 } = F ( 0 ) = 7 16 p=P\{X<0\}=F(0)-P\{X=0\}=F(0)=\frac{7}{16} p = P { X < 0 } = F ( 0 ) − P { X = 0 } = F ( 0 ) = 16 7
.
20 假设随机变量
Y Y Y
服从参数为
λ = 1 \lambda = 1 λ = 1
的指数分布,随机变量
X k = { 0 , Y ≤ k , 1 , Y > k X_k = \begin{cases}
0, & Y \le k, \\
1, & Y > k
\end{cases} X k = { 0 , 1 , Y ≤ k , Y > k
(
k = 1 , 2 k = 1,2 k = 1 , 2
),求:
(1)
X 1 X_1 X 1
和
X 2 X_2 X 2
的联合概率分布;
(2)
E ( X 1 + X 2 ) E(X_1 + X_2) E ( X 1 + X 2 )
.
【答案】 (1)
X 1 X_1 X 1
和
X 2 X_2 X 2
的联合概率分布为:P ( X 1 = 0 , X 2 = 0 ) = 1 − 1 e P(X_1=0, X_2=0) = 1 - \frac{1}{e} P ( X 1 = 0 , X 2 = 0 ) = 1 − e 1
,P ( X 1 = 0 , X 2 = 1 ) = 0 P(X_1=0, X_2=1) = 0 P ( X 1 = 0 , X 2 = 1 ) = 0
,P ( X 1 = 1 , X 2 = 0 ) = 1 e − 1 e 2 P(X_1=1, X_2=0) = \frac{1}{e} - \frac{1}{e^2} P ( X 1 = 1 , X 2 = 0 ) = e 1 − e 2 1
,P ( X 1 = 1 , X 2 = 1 ) = 1 e 2 P(X_1=1, X_2=1) = \frac{1}{e^2} P ( X 1 = 1 , X 2 = 1 ) = e 2 1
。 (2)
E ( X 1 + X 2 ) = 1 e + 1 e 2 E(X_1 + X_2) = \frac{1}{e} + \frac{1}{e^2} E ( X 1 + X 2 ) = e 1 + e 2 1
。
【解析】 随机变量
Y Y Y
服从参数
λ = 1 \lambda = 1 λ = 1
的指数分布,其概率密度函数为
f Y ( y ) = e − y f_Y(y) = e^{-y} f Y ( y ) = e − y
,
y ≥ 0 y \geq 0 y ≥ 0
。X k X_k X k
的定义为:当
Y ≤ k Y \leq k Y ≤ k
时
X k = 0 X_k = 0 X k = 0
,当
Y > k Y > k Y > k
时
X k = 1 X_k = 1 X k = 1
(
k = 1 , 2 k = 1, 2 k = 1 , 2
)。
(1) 联合概率分布的计算基于
Y Y Y
的取值范围:
P ( X 1 = 0 , X 2 = 0 ) = P ( Y ≤ 1 ) = ∫ 0 1 e − y d y = 1 − e − 1 = 1 − 1 e P(X_1=0, X_2=0) = P(Y \leq 1) = \int_0^1 e^{-y} \, dy = 1 - e^{-1} = 1 - \frac{1}{e} P ( X 1 = 0 , X 2 = 0 ) = P ( Y ≤ 1 ) = ∫ 0 1 e − y d y = 1 − e − 1 = 1 − e 1
。P ( X 1 = 0 , X 2 = 1 ) = P ( Y ≤ 1 且 Y > 2 ) = 0 P(X_1=0, X_2=1) = P(Y \leq 1 \text{ 且 } Y > 2) = 0 P ( X 1 = 0 , X 2 = 1 ) = P ( Y ≤ 1 且 Y > 2 ) = 0
,因为事件不可能发生。P ( X 1 = 1 , X 2 = 0 ) = P ( 1 < Y ≤ 2 ) = ∫ 1 2 e − y d y = e − 1 − e − 2 = 1 e − 1 e 2 P(X_1=1, X_2=0) = P(1 < Y \leq 2) = \int_1^2 e^{-y} \, dy = e^{-1} - e^{-2} = \frac{1}{e} - \frac{1}{e^2} P ( X 1 = 1 , X 2 = 0 ) = P ( 1 < Y ≤ 2 ) = ∫ 1 2 e − y d y = e − 1 − e − 2 = e 1 − e 2 1
。P ( X 1 = 1 , X 2 = 1 ) = P ( Y > 2 ) = ∫ 2 ∞ e − y d y = e − 2 = 1 e 2 P(X_1=1, X_2=1) = P(Y > 2) = \int_2^\infty e^{-y} \, dy = e^{-2} = \frac{1}{e^2} P ( X 1 = 1 , X 2 = 1 ) = P ( Y > 2 ) = ∫ 2 ∞ e − y d y = e − 2 = e 2 1
。验证概率之和为 1:
( 1 − 1 e ) + 0 + ( 1 e − 1 e 2 ) + 1 e 2 = 1
(1 - \frac{1}{e}) + 0 + (\frac{1}{e} - \frac{1}{e^2}) + \frac{1}{e^2} = 1
( 1 − e 1 ) + 0 + ( e 1 − e 2 1 ) + e 2 1 = 1 (2) 计算
E ( X 1 + X 2 ) E(X_1 + X_2) E ( X 1 + X 2 )
:
由于期望的线性性质,
E ( X 1 + X 2 ) = E ( X 1 ) + E ( X 2 ) E(X_1 + X_2) = E(X_1) + E(X_2) E ( X 1 + X 2 ) = E ( X 1 ) + E ( X 2 )
。X 1 X_1 X 1
和
X 2 X_2 X 2
均为伯努利随机变量:
E ( X 1 ) = P ( X 1 = 1 ) = P ( Y > 1 ) = e − 1 = 1 e E(X_1) = P(X_1=1) = P(Y > 1) = e^{-1} = \frac{1}{e} E ( X 1 ) = P ( X 1 = 1 ) = P ( Y > 1 ) = e − 1 = e 1
。E ( X 2 ) = P ( X 2 = 1 ) = P ( Y > 2 ) = e − 2 = 1 e 2 E(X_2) = P(X_2=1) = P(Y > 2) = e^{-2} = \frac{1}{e^2} E ( X 2 ) = P ( X 2 = 1 ) = P ( Y > 2 ) = e − 2 = e 2 1
。因此,
E ( X 1 + X 2 ) = 1 e + 1 e 2
E(X_1 + X_2) = \frac{1}{e} + \frac{1}{e^2}
E ( X 1 + X 2 ) = e 1 + e 2 1