卷 1 填空题 本题共5小题,每小题3分,满分15分
1 ∫ 0 1 2 x − x 2 d x = \int_0^1 \sqrt{2x - x^2} \dx = ∫ 0 1 2 x − x 2 d x =
______.
【答案】
π 4 \frac{\pi}{4} 4 π
【解析】
考虑积分
∫ 0 1 2 x − x 2 d x \int_0^1 \sqrt{2x - x^2} dx ∫ 0 1 2 x − x 2 d x
。首先完成平方:
2 x − x 2 = 1 − ( x − 1 ) 2 2x - x^2 = 1 - (x-1)^2 2 x − x 2 = 1 − ( x − 1 ) 2
,因此积分化为
∫ 0 1 1 − ( x − 1 ) 2 d x \int_0^1 \sqrt{1 - (x-1)^2} dx ∫ 0 1 1 − ( x − 1 ) 2 d x
。这表示圆心在
( 1 , 0 ) (1,0) ( 1 , 0 )
、半径为 1 的上半圆从
x = 0 x=0 x = 0
到
x = 1 x=1 x = 1
的曲线下的面积。
使用三角代换,令
x − 1 = sin t x-1 = \sin t x − 1 = sin t
,则
d x = cos t d t dx = \cos t dt d x = cos t d t
。当
x = 0 x=0 x = 0
时,
t = − π / 2 t = -\pi/2 t = − π /2
;当
x = 1 x=1 x = 1
时,
t = 0 t = 0 t = 0
。被积函数变为
1 − sin 2 t = cos 2 t = ∣ cos t ∣ \sqrt{1 - \sin^2 t} = \sqrt{\cos^2 t} = |\cos t| 1 − sin 2 t = cos 2 t = ∣ cos t ∣
,在区间
t ∈ [ − π / 2 , 0 ] t \in [-\pi/2, 0] t ∈ [ − π /2 , 0 ]
上,
cos t ≥ 0 \cos t \geq 0 cos t ≥ 0
,故
∣ cos t ∣ = cos t |\cos t| = \cos t ∣ cos t ∣ = cos t
。积分变为:
∫ − π / 2 0 cos t ⋅ cos t d t = ∫ − π / 2 0 cos 2 t d t . \int_{-\pi/2}^{0} \cos t \cdot \cos t dt = \int_{-\pi/2}^{0} \cos^2 t dt. ∫ − π /2 0 cos t ⋅ cos t d t = ∫ − π /2 0 cos 2 t d t . 利用恒等式
cos 2 t = 1 + cos 2 t 2 \cos^2 t = \frac{1 + \cos 2t}{2} cos 2 t = 2 1 + c o s 2 t
,得:
∫ − π / 2 0 cos 2 t d t = ∫ − π / 2 0 1 + cos 2 t 2 d t = 1 2 ∫ − π / 2 0 1 d t + 1 2 ∫ − π / 2 0 cos 2 t d t . \int_{-\pi/2}^{0} \cos^2 t dt = \int_{-\pi/2}^{0} \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \int_{-\pi/2}^{0} 1 dt + \frac{1}{2} \int_{-\pi/2}^{0} \cos 2t dt. ∫ − π /2 0 cos 2 t d t = ∫ − π /2 0 2 1 + cos 2 t d t = 2 1 ∫ − π /2 0 1 d t + 2 1 ∫ − π /2 0 cos 2 t d t . 计算得:
1 2 [ t ] − π / 2 0 + 1 2 [ sin 2 t 2 ] − π / 2 0 = 1 2 ( 0 − ( − π / 2 ) ) + 1 4 ( sin 0 − sin ( − π ) ) = π 4 + 0 = π 4 . \frac{1}{2} \left[ t \right]_{-\pi/2}^{0} + \frac{1}{2} \left[ \frac{\sin 2t}{2} \right]_{-\pi/2}^{0} = \frac{1}{2} (0 - (-\pi/2)) + \frac{1}{4} (\sin 0 - \sin (-\pi)) = \frac{\pi}{4} + 0 = \frac{\pi}{4}. 2 1 [ t ] − π /2 0 + 2 1 [ 2 sin 2 t ] − π /2 0 = 2 1 ( 0 − ( − π /2 )) + 4 1 ( sin 0 − sin ( − π )) = 4 π + 0 = 4 π . 因此,积分值为
π 4 \frac{\pi}{4} 4 π
。
2 曲面
x 2 + 2 y 2 + 3 z 2 = 21 x^2 + 2y^2 + 3z^2 = 21 x 2 + 2 y 2 + 3 z 2 = 21
在点
( 1 , - 2 , 2 ) \left(1,\text{-}2,2 \right) ( 1 , - 2 , 2 )
的法线方程为 ______.
【答案】
x − 1 1 = y + 2 − 4 = z − 2 6 \frac{x - 1}{1} = \frac{y + 2}{-4} = \frac{z - 2}{6} 1 x − 1 = − 4 y + 2 = 6 z − 2 【解析】 曲面方程为
x 2 + 2 y 2 + 3 z 2 = 21
x^2 + 2y^2 + 3z^2 = 21
x 2 + 2 y 2 + 3 z 2 = 21 令
F ( x , y , z ) = x 2 + 2 y 2 + 3 z 2 − 21
F(x, y, z) = x^2 + 2y^2 + 3z^2 - 21
F ( x , y , z ) = x 2 + 2 y 2 + 3 z 2 − 21 曲面的法向量为梯度
∇ F = ( ∂ F ∂ x , ∂ F ∂ y , ∂ F ∂ z )
\nabla F = \left( \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right)
∇ F = ( ∂ x ∂ F , ∂ y ∂ F , ∂ z ∂ F ) 计算偏导数:
∂ F ∂ x = 2 x , ∂ F ∂ y = 4 y , ∂ F ∂ z = 6 z
\frac{\partial F}{\partial x} = 2x, \quad \frac{\partial F}{\partial y} = 4y, \quad \frac{\partial F}{\partial z} = 6z
∂ x ∂ F = 2 x , ∂ y ∂ F = 4 y , ∂ z ∂ F = 6 z 在点
( 1 , − 2 , 2 ) (1, -2, 2) ( 1 , − 2 , 2 )
处,法向量为
( 2 × 1 , 4 × ( − 2 ) , 6 × 2 ) = ( 2 , − 8 , 12 )
(2 \times 1, \ 4 \times (-2), \ 6 \times 2) = (2, -8, 12)
( 2 × 1 , 4 × ( − 2 ) , 6 × 2 ) = ( 2 , − 8 , 12 ) 简化后得
( 1 , − 4 , 6 )
(1, -4, 6)
( 1 , − 4 , 6 ) 法线方程: 过点
( 1 , − 2 , 2 ) (1, -2, 2) ( 1 , − 2 , 2 )
,方向向量为
( 1 , − 4 , 6 ) (1, -4, 6) ( 1 , − 4 , 6 )
,方程为
x − 1 1 = y + 2 − 4 = z − 2 6
\frac{x - 1}{1} = \frac{y + 2}{-4} = \frac{z - 2}{6}
1 x − 1 = − 4 y + 2 = 6 z − 2 3 微分方程
x y ′ ′ + 3 y ′ = 0 xy'' + 3y' = 0 x y ′′ + 3 y ′ = 0
的通解为 ______.
【答案】 y = C 1 x 2 + C 2 y = \frac{C_1}{x^2} + C_2 y = x 2 C 1 + C 2
,其中
C 1 C_1 C 1
和
C 2 C_2 C 2
为任意常数。
【解析】 给定微分方程
x y ′ ′ + 3 y ′ = 0 xy'' + 3y' = 0 x y ′′ + 3 y ′ = 0
,令
p = y ′ p = y' p = y ′
,则
y ′ ′ = p ′ y'' = p' y ′′ = p ′
,代入方程得
x p ′ + 3 p = 0 x p' + 3p = 0 x p ′ + 3 p = 0
。分离变量得
d p p = − 3 d x x \frac{dp}{p} = -3 \frac{dx}{x} p d p = − 3 x d x
,积分得
ln ∣ p ∣ = − 3 ln ∣ x ∣ + C \ln |p| = -3 \ln |x| + C ln ∣ p ∣ = − 3 ln ∣ x ∣ + C
,即
p = C 1 x − 3 p = C_1 x^{-3} p = C 1 x − 3
,其中
C 1 = e C C_1 = e^C C 1 = e C
。由于
p = y ′ p = y' p = y ′
,有
y ′ = C 1 x − 3 y' = C_1 x^{-3} y ′ = C 1 x − 3
,再积分得
y = C 1 ∫ x − 3 d x = C 1 ( − 1 2 x − 2 ) + C 2 = − C 1 2 x − 2 + C 2 y = C_1 \int x^{-3} dx = C_1 \left( -\frac{1}{2} x^{-2} \right) + C_2 = -\frac{C_1}{2} x^{-2} + C_2 y = C 1 ∫ x − 3 d x = C 1 ( − 2 1 x − 2 ) + C 2 = − 2 C 1 x − 2 + C 2
。令
C 1 ′ = − C 1 2 C_1' = -\frac{C_1}{2} C 1 ′ = − 2 C 1
,则通解为
y = C 1 ′ x 2 + C 2 y = \frac{C_1'}{x^2} + C_2 y = x 2 C 1 ′ + C 2
,重命名常数得
y = C 1 x 2 + C 2 y = \frac{C_1}{x^2} + C_2 y = x 2 C 1 + C 2
。
4 已知方程组
( 1 2 1 2 3 a + 2 1 a − 2 ) ( x 1 x 2 x 3 ) = ( 1 3 0 ) \begin{pmatrix}
1 & 2 & 1 \\
2 & 3 & a + 2 \\
1 & a & -2
\end{pmatrix}\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
1 \\
3 \\
0
\end{pmatrix} 1 2 1 2 3 a 1 a + 2 − 2 x 1 x 2 x 3 = 1 3 0
无解,则
a = a = a =
______.
【答案】
− 1 -1 − 1
【解析】
给定线性方程组
A x = b A\mathbf{x} = \mathbf{b} A x = b
,其中
A = ( 1 2 1 2 3 a + 2 1 a − 2 ) A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{pmatrix} A = 1 2 1 2 3 a 1 a + 2 − 2
,
b = ( 1 3 0 ) \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} b = 1 3 0
。方程组无解时,系数矩阵
A A A
的秩小于增广矩阵
[ A ∣ b ] [A | \mathbf{b}] [ A ∣ b ]
的秩。
对增广矩阵进行行化简:
( 1 2 1 1 2 3 a + 2 3 1 a − 2 0 ) \left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
2 & 3 & a+2 & 3 \\
1 & a & -2 & 0
\end{array}\right) 1 2 1 2 3 a 1 a + 2 − 2 1 3 0 首先,执行行操作
R 2 ← R 2 − 2 R 1 R2 \gets R2 - 2R1 R 2 ← R 2 − 2 R 1
和
R 3 ← R 3 − R 1 R3 \gets R3 - R1 R 3 ← R 3 − R 1
:
( 1 2 1 1 0 − 1 a 1 0 a − 2 − 3 − 1 ) \left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
0 & -1 & a & 1 \\
0 & a-2 & -3 & -1
\end{array}\right) 1 0 0 2 − 1 a − 2 1 a − 3 1 1 − 1 然后,将第二行乘以
− 1 -1 − 1
:
( 1 2 1 1 0 1 − a − 1 0 a − 2 − 3 − 1 ) \left(\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
0 & 1 & -a & -1 \\
0 & a-2 & -3 & -1
\end{array}\right) 1 0 0 2 1 a − 2 1 − a − 3 1 − 1 − 1 接着,使用第二行消去第一行和第三行的第二列元素:
R 1 ← R 1 − 2 R 2 R1 \gets R1 - 2R2 R 1 ← R 1 − 2 R 2
:第一行变为
( 1 , 0 , 1 + 2 a , 3 ) (1, 0, 1+2a, 3) ( 1 , 0 , 1 + 2 a , 3 ) R 3 ← R 3 − ( a − 2 ) R 2 R3 \gets R3 - (a-2)R2 R 3 ← R 3 − ( a − 2 ) R 2
:第三行变为
( 0 , 0 , a 2 − 2 a − 3 , a − 3 ) (0, 0, a^2 - 2a - 3, a - 3) ( 0 , 0 , a 2 − 2 a − 3 , a − 3 ) 化简后的增广矩阵为:
( 1 0 1 + 2 a 3 0 1 − a − 1 0 0 a 2 − 2 a − 3 a − 3 ) \left(\begin{array}{ccc|c}
1 & 0 & 1+2a & 3 \\
0 & 1 & -a & -1 \\
0 & 0 & a^2 - 2a - 3 & a - 3
\end{array}\right) 1 0 0 0 1 0 1 + 2 a − a a 2 − 2 a − 3 3 − 1 a − 3 方程组无解的条件是系数矩阵的秩小于增广矩阵的秩。这要求第三行中系数部分为零而常数部分非零,即:
a 2 − 2 a − 3 = 0 a − 3 ≠ 0 a^2 - 2a - 3 = 0 \quad \text{} \quad a - 3 \neq 0 a 2 − 2 a − 3 = 0 a − 3 = 0 解方程
a 2 − 2 a − 3 = 0 a^2 - 2a - 3 = 0 a 2 − 2 a − 3 = 0
得
a = 3 a = 3 a = 3
或
a = − 1 a = -1 a = − 1
。当
a = 3 a = 3 a = 3
时,
a − 3 = 0 a - 3 = 0 a − 3 = 0
,方程组有无穷多解;当
a = − 1 a = -1 a = − 1
时,
a − 3 = − 4 ≠ 0 a - 3 = -4 \neq 0 a − 3 = − 4 = 0
,方程组无解。
因此,
a = − 1 a = -1 a = − 1
。
5 设两个相互独立的事件
A A A
和
B B B
都不发生的概率为
1 9 \frac{1}{9} 9 1
,
A A A
发生
B B B
不发生的概率与
B B B
发生
A A A
不发生的概率相等,
则
P ( A ) P(A) P ( A )
= ______.
【答案】
2 3 \frac{2}{3} 3 2
【解析】
设
P ( A ) = p P(A) = p P ( A ) = p
,
P ( B ) = q P(B) = q P ( B ) = q
。 由于事件
A A A
和
B B B
相互独立,有
P ( A ∩ B ) = p q .
P(A \cap B) = pq.
P ( A ∩ B ) = pq . 已知
A A A
和
B B B
都不发生的概率为
P ( A ‾ ∩ B ‾ ) = ( 1 − p ) ( 1 − q ) = 1 9 .
P(\overline{A} \cap \overline{B}) = (1-p)(1-q) = \frac{1}{9}.
P ( A ∩ B ) = ( 1 − p ) ( 1 − q ) = 9 1 . 同时,已知
A A A
发生
B B B
不发生的概率等于
B B B
发生
A A A
不发生的概率,即
P ( A ∩ B ‾ ) = P ( B ∩ A ‾ ) .
P(A \cap \overline{B}) = P(B \cap \overline{A}).
P ( A ∩ B ) = P ( B ∩ A ) . 由独立性可得
P ( A ∩ B ‾ ) = p ( 1 − q ) , P ( B ∩ A ‾ ) = q ( 1 − p ) ,
P(A \cap \overline{B}) = p(1-q), \quad P(B \cap \overline{A}) = q(1-p),
P ( A ∩ B ) = p ( 1 − q ) , P ( B ∩ A ) = q ( 1 − p ) , 因此
p ( 1 − q ) = q ( 1 − p ) .
p(1-q) = q(1-p).
p ( 1 − q ) = q ( 1 − p ) . 化简该方程:
p − p q = q − p q ,
p - pq = q - pq,
p − pq = q − pq ,
即
P ( A ) = P ( B ) P(A) = P(B) P ( A ) = P ( B )
。
代入
( 1 − p ) ( 1 − q ) = 1 9 (1-p)(1-q) = \frac{1}{9} ( 1 − p ) ( 1 − q ) = 9 1
,得
( 1 − p ) 2 = 1 9 .
(1-p)^2 = \frac{1}{9}.
( 1 − p ) 2 = 9 1 . 解得
1 − p = 1 3 ( 取正值,因为概率非负 ) ,
1-p = \frac{1}{3} \quad (\text{取正值,因为概率非负}),
1 − p = 3 1 ( 取正值,因为概率非负 ) ,
p = 2 3 .
p = \frac{2}{3}.
p = 3 2 . 因此,
P ( A ) = 2 3 .
P(A) = \frac{2}{3}.
P ( A ) = 3 2 . 选择题 本题共5小题,每小题3分,共15分
6 设
f ( x ) , g ( x ) f(x),g(x) f ( x ) , g ( x )
是恒大于零的可导函数,且
f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) < 0 f'(x)g(x) - f(x)g'(x) < 0 f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) < 0
,则当
a < x < b a < x < b a < x < b
时,有
查看答案与解析
收藏
正确答案:A 【解析】 已知
f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) < 0 f'(x)g(x) - f(x)g'(x) < 0 f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) < 0
,考虑函数
h ( x ) = f ( x ) g ( x ) .
h(x) = \frac{f(x)}{g(x)}.
h ( x ) = g ( x ) f ( x ) . 由于
g ( x ) > 0 g(x) > 0 g ( x ) > 0
,函数
h ( x ) h(x) h ( x )
可导,且导数为
h ′ ( x ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 .
h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.
h ′ ( x ) = [ g ( x ) ] 2 f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) . 分母恒正,分子小于零,因此
h ′ ( x ) < 0 h'(x) < 0 h ′ ( x ) < 0
,即
h ( x ) h(x) h ( x )
严格递减。
当
a < x < b a < x < b a < x < b
时,由
h ( x ) h(x) h ( x )
递减可得
h ( x ) > h ( b ) ,
h(x) > h(b),
h ( x ) > h ( b ) , 即
f ( x ) g ( x ) > f ( b ) g ( b ) .
\frac{f(x)}{g(x)} > \frac{f(b)}{g(b)}.
g ( x ) f ( x ) > g ( b ) f ( b ) . 两边同乘
g ( x ) g ( b ) g(x)g(b) g ( x ) g ( b )
(正数),得
f ( x ) g ( b ) > f ( b ) g ( x ) ,
f(x)g(b) > f(b)g(x),
f ( x ) g ( b ) > f ( b ) g ( x ) , 即选项 A 成立。
选项 B:
f ( x ) g ( a ) > f ( a ) g ( x ) ⇔ h ( x ) > h ( a ) .
f(x)g(a) > f(a)g(x) \quad \Leftrightarrow \quad h(x) > h(a).
f ( x ) g ( a ) > f ( a ) g ( x ) ⇔ h ( x ) > h ( a ) . 但由
h ( x ) h(x) h ( x )
递减及
a < x a < x a < x
,得
h ( a ) > h ( x ) h(a) > h(x) h ( a ) > h ( x )
,因此 B 不成立。
选项 C 和 D 涉及乘积
f ( x ) g ( x ) f(x)g(x) f ( x ) g ( x )
的单调性,无法由题设条件确定。 例如:
取
f ( x ) = e − x , g ( x ) = 1 f(x) = e^{-x}, g(x) = 1 f ( x ) = e − x , g ( x ) = 1
,则
f ( x ) g ( x ) = e − x f(x)g(x) = e^{-x} f ( x ) g ( x ) = e − x
递减,C 成立但 D 不成立。 取
f ( x ) = x , g ( x ) = x 2 f(x) = x, g(x) = x^2 f ( x ) = x , g ( x ) = x 2
(
x > 0 x > 0 x > 0
),则
f ( x ) g ( x ) = x 3 f(x)g(x) = x^3 f ( x ) g ( x ) = x 3
递增,D 成立但 C 不成立。 因此,只有选项 A 恒成立。
7 设
S : x 2 + y 2 + z 2 = a 2 ( z ≥ 0 ) S: x^2 + y^2 + z^2 = a^2\;(z \ge 0) S : x 2 + y 2 + z 2 = a 2 ( z ≥ 0 )
,
S 1 S_1 S 1
为
S S S
在第一卦限中的部分,则有
查看答案与解析
收藏
正确答案:C 【解析】 对于上半球面
S : x 2 + y 2 + z 2 = a 2 ( z ≥ 0 ) S: x^2 + y^2 + z^2 = a^2 \ (z \ge 0) S : x 2 + y 2 + z 2 = a 2 ( z ≥ 0 )
及其在第一卦限的部分
S 1 S_1 S 1
,采用球坐标计算曲面积分。取参数化表示:
x = a sin ϕ cos θ , y = a sin ϕ sin θ , z = a cos ϕ ,
x = a \sin \phi \cos \theta, \quad y = a \sin \phi \sin \theta, \quad z = a \cos \phi,
x = a sin ϕ cos θ , y = a sin ϕ sin θ , z = a cos ϕ , 其中
ϕ ∈ [ 0 , π / 2 ] \phi \in [0, \pi/2] ϕ ∈ [ 0 , π /2 ]
,而对于整个上半球面
S S S
,
θ ∈ [ 0 , 2 π ] \theta \in [0, 2\pi] θ ∈ [ 0 , 2 π ]
;对于
S 1 S_1 S 1
,
θ ∈ [ 0 , π / 2 ] \theta \in [0, \pi/2] θ ∈ [ 0 , π /2 ]
。曲面积元为:
d S = a 2 sin ϕ d ϕ d θ .
dS = a^2 \sin \phi \, d\phi \, d\theta.
d S = a 2 sin ϕ d ϕ d θ . 1. 计算
∬ S 1 x d S \iint_{S_1} x \, dS ∬ S 1 x d S
:
∬ S 1 x d S = ∫ 0 π / 2 ∫ 0 π / 2 ( a sin ϕ cos θ ) ⋅ a 2 sin ϕ d ϕ d θ = a 3 ∫ 0 π / 2 cos θ d θ ∫ 0 π / 2 sin 2 ϕ d ϕ .
\begin{aligned}
\iint_{S_1} x \, dS
&= \int_{0}^{\pi/2} \int_{0}^{\pi/2} (a \sin \phi \cos \theta) \cdot a^2 \sin \phi \, d\phi \, d\theta \\
&= a^3 \int_{0}^{\pi/2} \cos \theta \, d\theta \int_{0}^{\pi/2} \sin^2 \phi \, d\phi.
\end{aligned}
∬ S 1 x d S = ∫ 0 π /2 ∫ 0 π /2 ( a sin ϕ cos θ ) ⋅ a 2 sin ϕ d ϕ d θ = a 3 ∫ 0 π /2 cos θ d θ ∫ 0 π /2 sin 2 ϕ d ϕ . 其中:
∫ 0 π / 2 cos θ d θ = 1 , ∫ 0 π / 2 sin 2 ϕ d ϕ = π 4 ,
\int_{0}^{\pi/2} \cos \theta \, d\theta = 1, \quad \int_{0}^{\pi/2} \sin^2 \phi \, d\phi = \frac{\pi}{4},
∫ 0 π /2 cos θ d θ = 1 , ∫ 0 π /2 sin 2 ϕ d ϕ = 4 π , 所以:
∬ S 1 x d S = a 3 ⋅ 1 ⋅ π 4 = a 3 π 4 .
\iint_{S_1} x \, dS = a^3 \cdot 1 \cdot \frac{\pi}{4} = \frac{a^3 \pi}{4}.
∬ S 1 x d S = a 3 ⋅ 1 ⋅ 4 π = 4 a 3 π . 2. 计算
∬ S z d S \iint_S z \, dS ∬ S z d S
:
∬ S z d S = ∫ 0 2 π ∫ 0 π / 2 ( a cos ϕ ) ⋅ a 2 sin ϕ d ϕ d θ = a 3 ∫ 0 2 π d θ ∫ 0 π / 2 cos ϕ sin ϕ d ϕ .
\begin{aligned}
\iint_S z \, dS
&= \int_{0}^{2\pi} \int_{0}^{\pi/2} (a \cos \phi) \cdot a^2 \sin \phi \, d\phi \, d\theta \\
&= a^3 \int_{0}^{2\pi} d\theta \int_{0}^{\pi/2} \cos \phi \sin \phi \, d\phi.
\end{aligned}
∬ S z d S = ∫ 0 2 π ∫ 0 π /2 ( a cos ϕ ) ⋅ a 2 sin ϕ d ϕ d θ = a 3 ∫ 0 2 π d θ ∫ 0 π /2 cos ϕ sin ϕ d ϕ . 其中:
∫ 0 2 π d θ = 2 π , ∫ 0 π / 2 cos ϕ sin ϕ d ϕ = 1 2 ,
\int_{0}^{2\pi} d\theta = 2\pi, \quad \int_{0}^{\pi/2} \cos \phi \sin \phi \, d\phi = \frac{1}{2},
∫ 0 2 π d θ = 2 π , ∫ 0 π /2 cos ϕ sin ϕ d ϕ = 2 1 , 所以:
∬ S z d S = a 3 ⋅ 2 π ⋅ 1 2 = a 3 π .
\iint_S z \, dS = a^3 \cdot 2\pi \cdot \frac{1}{2} = a^3 \pi.
∬ S z d S = a 3 ⋅ 2 π ⋅ 2 1 = a 3 π . 3. 比较选项:
由以上结果得:
∬ S z d S = a 3 π = 4 ⋅ a 3 π 4 = 4 ∬ S 1 x d S ,
\iint_S z \, dS = a^3 \pi = 4 \cdot \frac{a^3 \pi}{4} = 4 \iint_{S_1} x \, dS,
∬ S z d S = a 3 π = 4 ⋅ 4 a 3 π = 4 ∬ S 1 x d S , 因此选项 C 正确。
4. 分析其他选项:
选项 A :
∬ S x d S = 0 \iint_S x \, dS = 0 ∬ S x d S = 0
(因为
∫ 0 2 π cos θ d θ = 0 \int_{0}^{2\pi} \cos \theta \, d\theta = 0 ∫ 0 2 π cos θ d θ = 0
),但
4 ∬ S 1 x d S = a 3 π ≠ 0 4 \iint_{S_1} x \, dS = a^3 \pi \neq 0 4 ∬ S 1 x d S = a 3 π = 0
,不相等。选项 B :
∬ S y d S = 0 \iint_S y \, dS = 0 ∬ S y d S = 0
(因为
∫ 0 2 π sin θ d θ = 0 \int_{0}^{2\pi} \sin \theta \, d\theta = 0 ∫ 0 2 π sin θ d θ = 0
),不相等。选项 D :
∬ S x y z d S = 0 \iint_S xyz \, dS = 0 ∬ S x yz d S = 0
(因为
∫ 0 2 π cos θ sin θ d θ = 0 \int_{0}^{2\pi} \cos \theta \sin \theta \, d\theta = 0 ∫ 0 2 π cos θ sin θ d θ = 0
),而
4 ∬ S 1 x y z d S ≠ 0 4 \iint_{S_1} xyz \, dS \neq 0 4 ∬ S 1 x yz d S = 0
,不相等。结论 :正确选项为 C 。
8 设级数
∑ n = 1 ∞ u n \sum_{n = 1}^{\infty}u_n ∑ n = 1 ∞ u n
收敛,则必收敛的级数为
查看答案与解析
收藏
正确答案:D 【解析】 设级数
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_n ∑ n = 1 ∞ u n
收敛,其部分和序列
S N = ∑ n = 1 N u n S_N = \sum_{n=1}^N u_n S N = ∑ n = 1 N u n
收敛于
S S S
。考虑选项 D:
∑ n = 1 ∞ ( u n + u n + 1 ) \sum_{n=1}^{\infty} (u_n + u_{n+1}) ∑ n = 1 ∞ ( u n + u n + 1 )
,其部分和为
V N = ∑ n = 1 N ( u n + u n + 1 ) = ∑ n = 1 N u n + ∑ n = 1 N u n + 1 = S N + ( S N + 1 − u 1 ) V_N = \sum_{n=1}^N (u_n + u_{n+1}) = \sum_{n=1}^N u_n + \sum_{n=1}^N u_{n+1} = S_N + (S_{N+1} - u_1) V N = ∑ n = 1 N ( u n + u n + 1 ) = ∑ n = 1 N u n + ∑ n = 1 N u n + 1 = S N + ( S N + 1 − u 1 )
。由于
S N S_N S N
和
S N + 1 S_{N+1} S N + 1
均收敛于
S S S
,故
V N → S + S − u 1 = 2 S − u 1 V_N \to S + S - u_1 = 2S - u_1 V N → S + S − u 1 = 2 S − u 1
,因此级数 D 收敛。
对于选项 A、B、C,均存在反例表明不一定收敛:
A:取
u n = ( − 1 ) n ln n u_n = \frac{(-1)^n}{\ln n} u n = l n n ( − 1 ) n
(
n ≥ 2 n \geq 2 n ≥ 2
),则
∑ u n \sum u_n ∑ u n
收敛(交错级数测试),但
∑ ( − 1 ) n u n n = ∑ 1 n ln n \sum (-1)^n \frac{u_n}{n} = \sum \frac{1}{n \ln n} ∑ ( − 1 ) n n u n = ∑ n l n n 1
发散(积分测试)。 B:取
u n = ( − 1 ) n n u_n = \frac{(-1)^n}{\sqrt{n}} u n = n ( − 1 ) n
,则
∑ u n \sum u_n ∑ u n
收敛,但
∑ u n 2 = ∑ 1 n \sum u_n^2 = \sum \frac{1}{n} ∑ u n 2 = ∑ n 1
发散。 C:取
u n = ( − 1 ) n n u_n = \frac{(-1)^n}{n} u n = n ( − 1 ) n
,则
∑ u n \sum u_n ∑ u n
收敛,但
∑ ( u 2 n − 1 − u 2 n ) = ∑ ( − 1 2 n − 1 − 1 2 n ) \sum (u_{2n-1} - u_{2n}) = \sum \left( -\frac{1}{2n-1} - \frac{1}{2n} \right) ∑ ( u 2 n − 1 − u 2 n ) = ∑ ( − 2 n − 1 1 − 2 n 1 )
发散。 因此,仅选项 D 必收敛。
9 设
n n n
维列向量组
α 1 , ⋅ ⋅ ⋅ , α m ( m < n ) \alpha_1, \cdot \cdot \cdot ,\alpha_m(m < n) α 1 , ⋅ ⋅ ⋅ , α m ( m < n )
线性无关,则
n n n
维列向量组
β 1 , ⋅ ⋅ ⋅ , β m \beta_1, \cdot \cdot \cdot ,\beta_m β 1 , ⋅ ⋅ ⋅ , β m
线性无关的充分必要条件为
查看答案与解析
收藏
正确答案:D 【解析】 已知
α 1 , … , α m \alpha_1, \dots, \alpha_m α 1 , … , α m
线性无关,且
m < n m < n m < n
,因此矩阵
A = ( α 1 , … , α m ) A = (\alpha_1, \dots, \alpha_m) A = ( α 1 , … , α m )
的秩为
m m m
。向量组
β 1 , … , β m \beta_1, \dots, \beta_m β 1 , … , β m
线性无关的充要条件是矩阵
B = ( β 1 , … , β m ) B = (\beta_1, \dots, \beta_m) B = ( β 1 , … , β m )
的秩为
m m m
。 矩阵等价的定义是存在可逆矩阵
P P P
和
Q Q Q
,使得
P A Q = B PAQ = B P A Q = B
,而两个矩阵等价的充要条件是它们具有相同的秩。由于
A A A
的秩为
m m m
,因此
B B B
的秩为
m m m
当且仅当
A A A
与
B B B
等价。故选项 D 是充分必要条件。
选项 A 若
α \alpha α
组可由
β \beta β
组线性表示,则存在矩阵
C C C
,使得
A = B C A = BC A = BC
。由于
α \alpha α
组线性无关,
A A A
的秩为
m m m
,因此
B C BC BC
的秩为
m m m
,故
B B B
的秩至少为
m m m
。又因为
B B B
只有
m m m
列,所以
B B B
的秩为
m m m
,即
β \beta β
组线性无关。 但反之不成立:当
β \beta β
组线性无关时,
α \alpha α
组不一定可由
β \beta β
组线性表示。因此 A 不是必要条件。
选项 B 若
β \beta β
组可由
α \alpha α
组线性表示,则存在矩阵
D D D
,使得
B = A D B = AD B = A D
。但
β \beta β
组可能线性相关,例如当
β \beta β
组落在
α \alpha α
组张成的子空间中但自身线性相关时;反之,当
β \beta β
组线性无关时,不一定可由
α \alpha α
组线性表示。因此 B 既不是充分也不是必要条件。
选项 C 若
α \alpha α
组与
β \beta β
组等价,则它们可以互相线性表示。由于
α \alpha α
组线性无关,
β \beta β
组也必须线性无关。 但反之不成立:当
β \beta β
组线性无关时,
α \alpha α
组与
β \beta β
组可能张成不同的子空间,因此不一定等价。故 C 不是必要条件。
因此,正确选项为 D 。
10 设二维随机变量
( X , Y ) \left(X,Y \right) ( X , Y )
服从二维正态分布,则随机变量
ξ = X + Y \xi = X + Y ξ = X + Y
与
η = X − Y \eta = X - Y η = X − Y
不相关的充分必要条件为
查看答案与解析
收藏
正确答案:B ξ \xi ξ
和
η \eta η
不相关的充分必要条件是它们的协方差
Cov ( ξ , η ) = 0 \text{Cov}(\xi, \eta) = 0 Cov ( ξ , η ) = 0
。由于
Cov ( ξ , η ) = Cov ( X + Y , X − Y ) = Cov ( X , X ) − Cov ( X , Y ) + Cov ( Y , X ) − Cov ( Y , Y ) = Cov ( X , X ) − Cov ( Y , Y ) = D ( X ) − D ( Y )
\begin{aligned}
\text{Cov}(\xi, \eta) &= \text{Cov}(X + Y, X - Y) \\
&= \text{Cov}(X, X) - \text{Cov}(X, Y) + \text{Cov}(Y, X) - \text{Cov}(Y, Y) \\
&= \text{Cov}(X, X) - \text{Cov}(Y, Y) = D(X) - D(Y)
\end{aligned}
Cov ( ξ , η ) = Cov ( X + Y , X − Y ) = Cov ( X , X ) − Cov ( X , Y ) + Cov ( Y , X ) − Cov ( Y , Y ) = Cov ( X , X ) − Cov ( Y , Y ) = D ( X ) − D ( Y ) 可见
Cov ( ξ , η ) = 0 \text{Cov}(\xi, \eta) = 0 Cov ( ξ , η ) = 0
等价于
D ( X ) = D ( Y ) D(X) = D(Y) D ( X ) = D ( Y )
,即
E ( X 2 ) − [ E ( X ) ] 2 = E ( Y 2 ) − [ E ( Y ) ] 2 E(X^2) - [E(X)]^2 = E(Y^2) - [E(Y)]^2 E ( X 2 ) − [ E ( X ) ] 2 = E ( Y 2 ) − [ E ( Y ) ] 2
,故正确选项为 (B)。
解答题 11 lim x → 0 ( 2 + e 1 x 1 + e 4 x + sin x ∣ x ∣ ) = \lim_{x \to 0} \left(\frac{2 + \e^{\frac{1}{x}}}{1 + \e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) = x → 0 lim ( 1 + e x 4 2 + e x 1 + ∣ x ∣ sin x ) = 【答案】 1
【解析】 考虑极限
lim x → 0 ( 2 + e 1 x 1 + e 4 x + sin x ∣ x ∣ ) \lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right) lim x → 0 ( 1 + e x 4 2 + e x 1 + ∣ x ∣ s i n x )
。需要分别讨论
x → 0 + x \to 0^+ x → 0 +
和
x → 0 − x \to 0^- x → 0 −
的情况。
首先,分析第一部分
2 + e 1 x 1 + e 4 x \frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} 1 + e x 4 2 + e x 1
:
当
x → 0 + x \to 0^+ x → 0 +
时,
1 x → + ∞ \frac{1}{x} \to +\infty x 1 → + ∞
,
e 1 x → + ∞ e^{\frac{1}{x}} \to +\infty e x 1 → + ∞
,
e 4 x → + ∞ e^{\frac{4}{x}} \to +\infty e x 4 → + ∞
。分子分母同时除以
e 4 x e^{\frac{4}{x}} e x 4
,得2 e − 4 x + e 1 x − 4 x e − 4 x + 1 = 2 e − 4 x + e − 3 x e − 4 x + 1 → 0 + 0 0 + 1 = 0. \frac{2 e^{-\frac{4}{x}} + e^{\frac{1}{x} - \frac{4}{x}}}{e^{-\frac{4}{x}} + 1} = \frac{2 e^{-\frac{4}{x}} + e^{-\frac{3}{x}}}{e^{-\frac{4}{x}} + 1} \to \frac{0 + 0}{0 + 1} = 0. e − x 4 + 1 2 e − x 4 + e x 1 − x 4 = e − x 4 + 1 2 e − x 4 + e − x 3 → 0 + 1 0 + 0 = 0. 当
x → 0 − x \to 0^- x → 0 −
时,
1 x → − ∞ \frac{1}{x} \to -\infty x 1 → − ∞
,
e 1 x → 0 e^{\frac{1}{x}} \to 0 e x 1 → 0
,
e 4 x → 0 e^{\frac{4}{x}} \to 0 e x 4 → 0
,因此2 + e 1 x 1 + e 4 x → 2 + 0 1 + 0 = 2. \frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} \to \frac{2 + 0}{1 + 0} = 2. 1 + e x 4 2 + e x 1 → 1 + 0 2 + 0 = 2. 其次,分析第二部分
sin x ∣ x ∣ \frac{\sin x}{|x|} ∣ x ∣ s i n x
:
当
x → 0 + x \to 0^+ x → 0 +
时,
∣ x ∣ = x |x| = x ∣ x ∣ = x
,故
sin x ∣ x ∣ = sin x x → 1 \frac{\sin x}{|x|} = \frac{\sin x}{x} \to 1 ∣ x ∣ s i n x = x s i n x → 1
。 当
x → 0 − x \to 0^- x → 0 −
时,
∣ x ∣ = − x |x| = -x ∣ x ∣ = − x
,故
sin x ∣ x ∣ = sin x − x = − sin x x → − 1 \frac{\sin x}{|x|} = \frac{\sin x}{-x} = -\frac{\sin x}{x} \to -1 ∣ x ∣ s i n x = − x s i n x = − x s i n x → − 1
。 现在结合两部分:
当
x → 0 + x \to 0^+ x → 0 +
时,第一部分趋于 0,第二部分趋于 1,总和趋于
0 + 1 = 1 0 + 1 = 1 0 + 1 = 1
。 当
x → 0 − x \to 0^- x → 0 −
时,第一部分趋于 2,第二部分趋于 -1,总和趋于
2 + ( − 1 ) = 1 2 + (-1) = 1 2 + ( − 1 ) = 1
。 由于左极限和右极限均等于 1,故原极限为 1。
12 设
z = f ( x y , x y ) + g ( x y ) z = f\left(xy,\frac{x}{y} \right) + g\left(\frac{x}{y} \right) z = f ( x y , y x ) + g ( y x )
,
其中
f f f
具有二阶连续偏导数,
g g g
具有二阶连续导数,求
∂ 2 z ∂ x ∂ y . \frac{\pd^2 z}{\pdx\pdy}. ∂ x ∂ y ∂ 2 z .
【答案】
∂ 2 z ∂ x ∂ y = f u + x y f u u − 1 y 2 f v − x y 3 f v v − 1 y 2 g ′ − x y 3 g ′ ′ \frac{\partial^2 z}{\partial x \partial y} = f_u + x y f_{uu} - \frac{1}{y^2} f_v - \frac{x}{y^3} f_{vv} - \frac{1}{y^2} g' - \frac{x}{y^3} g'' ∂ x ∂ y ∂ 2 z = f u + x y f uu − y 2 1 f v − y 3 x f vv − y 2 1 g ′ − y 3 x g ′′ 其中
u = x y u = xy u = x y
,
v = x y v = \frac{x}{y} v = y x
,
f u = ∂ f ∂ u f_u = \frac{\partial f}{\partial u} f u = ∂ u ∂ f
,
f v = ∂ f ∂ v f_v = \frac{\partial f}{\partial v} f v = ∂ v ∂ f
,
f u u = ∂ 2 f ∂ u 2 f_{uu} = \frac{\partial^2 f}{\partial u^2} f uu = ∂ u 2 ∂ 2 f
,
f v v = ∂ 2 f ∂ v 2 f_{vv} = \frac{\partial^2 f}{\partial v^2} f vv = ∂ v 2 ∂ 2 f
,
g ′ = d g d v g' = \frac{dg}{dv} g ′ = d v d g
,
g ′ ′ = d 2 g d v 2 g'' = \frac{d^2 g}{dv^2} g ′′ = d v 2 d 2 g
,所有函数值在点
( u , v ) (u,v) ( u , v )
处计算。
【解析】
设
u = x y u = xy u = x y
,
v = x y v = \frac{x}{y} v = y x
,则
z = f ( u , v ) + g ( v ) z = f(u, v) + g(v) z = f ( u , v ) + g ( v )
。 先求一阶偏导数
∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z
:
∂ z ∂ x = ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x + d g d v ⋅ ∂ v ∂ x = f u ⋅ y + f v ⋅ 1 y + g ′ ⋅ 1 y = y f u + 1 y f v + 1 y g ′ \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} + \frac{dg}{dv} \cdot \frac{\partial v}{\partial x} = f_u \cdot y + f_v \cdot \frac{1}{y} + g' \cdot \frac{1}{y} = y f_u + \frac{1}{y} f_v + \frac{1}{y} g' ∂ x ∂ z = ∂ u ∂ f ⋅ ∂ x ∂ u + ∂ v ∂ f ⋅ ∂ x ∂ v + d v d g ⋅ ∂ x ∂ v = f u ⋅ y + f v ⋅ y 1 + g ′ ⋅ y 1 = y f u + y 1 f v + y 1 g ′ 然后求混合偏导数
∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left( \frac{\partial z}{\partial x} \right) ∂ x ∂ y ∂ 2 z = ∂ y ∂ ( ∂ x ∂ z )
:
∂ ∂ y ( y f u + 1 y f v + 1 y g ′ ) = ∂ ∂ y ( y f u ) + ∂ ∂ y ( 1 y f v ) + ∂ ∂ y ( 1 y g ′ ) \frac{\partial}{\partial y} \left( y f_u + \frac{1}{y} f_v + \frac{1}{y} g' \right) = \frac{\partial}{\partial y} (y f_u) + \frac{\partial}{\partial y} \left( \frac{1}{y} f_v \right) + \frac{\partial}{\partial y} \left( \frac{1}{y} g' \right) ∂ y ∂ ( y f u + y 1 f v + y 1 g ′ ) = ∂ y ∂ ( y f u ) + ∂ y ∂ ( y 1 f v ) + ∂ y ∂ ( y 1 g ′ ) 分别计算各项:
第一项:∂ ∂ y ( y f u ) = f u + y ∂ f u ∂ y = f u + y ( ∂ f u ∂ u ⋅ ∂ u ∂ y + ∂ f u ∂ v ⋅ ∂ v ∂ y ) = f u + y ( f u u ⋅ x + f u v ⋅ ( − x y 2 ) ) = f u + x y f u u − x y f u v \frac{\partial}{\partial y} (y f_u) = f_u + y \frac{\partial f_u}{\partial y} = f_u + y \left( \frac{\partial f_u}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f_u}{\partial v} \cdot \frac{\partial v}{\partial y} \right) = f_u + y \left( f_{uu} \cdot x + f_{uv} \cdot \left( -\frac{x}{y^2} \right) \right) = f_u + x y f_{uu} - \frac{x}{y} f_{uv} ∂ y ∂ ( y f u ) = f u + y ∂ y ∂ f u = f u + y ( ∂ u ∂ f u ⋅ ∂ y ∂ u + ∂ v ∂ f u ⋅ ∂ y ∂ v ) = f u + y ( f uu ⋅ x + f uv ⋅ ( − y 2 x ) ) = f u + x y f uu − y x f uv 第二项:∂ ∂ y ( 1 y f v ) = − 1 y 2 f v + 1 y ∂ f v ∂ y = − 1 y 2 f v + 1 y ( ∂ f v ∂ u ⋅ ∂ u ∂ y + ∂ f v ∂ v ⋅ ∂ v ∂ y ) = − 1 y 2 f v + 1 y ( f u v ⋅ x + f v v ⋅ ( − x y 2 ) ) = − 1 y 2 f v + x y f u v − x y 3 f v v \frac{\partial}{\partial y} \left( \frac{1}{y} f_v \right) = -\frac{1}{y^2} f_v + \frac{1}{y} \frac{\partial f_v}{\partial y} = -\frac{1}{y^2} f_v + \frac{1}{y} \left( \frac{\partial f_v}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f_v}{\partial v} \cdot \frac{\partial v}{\partial y} \right) = -\frac{1}{y^2} f_v + \frac{1}{y} \left( f_{uv} \cdot x + f_{vv} \cdot \left( -\frac{x}{y^2} \right) \right) = -\frac{1}{y^2} f_v + \frac{x}{y} f_{uv} - \frac{x}{y^3} f_{vv} ∂ y ∂ ( y 1 f v ) = − y 2 1 f v + y 1 ∂ y ∂ f v = − y 2 1 f v + y 1 ( ∂ u ∂ f v ⋅ ∂ y ∂ u + ∂ v ∂ f v ⋅ ∂ y ∂ v ) = − y 2 1 f v + y 1 ( f uv ⋅ x + f vv ⋅ ( − y 2 x ) ) = − y 2 1 f v + y x f uv − y 3 x f vv 第三项:∂ ∂ y ( 1 y g ′ ) = − 1 y 2 g ′ + 1 y ∂ g ′ ∂ y = − 1 y 2 g ′ + 1 y ( g ′ ′ ⋅ ∂ v ∂ y ) = − 1 y 2 g ′ + 1 y ( g ′ ′ ⋅ ( − x y 2 ) ) = − 1 y 2 g ′ − x y 3 g ′ ′ \frac{\partial}{\partial y} \left( \frac{1}{y} g' \right) = -\frac{1}{y^2} g' + \frac{1}{y} \frac{\partial g'}{\partial y} = -\frac{1}{y^2} g' + \frac{1}{y} \left( g'' \cdot \frac{\partial v}{\partial y} \right) = -\frac{1}{y^2} g' + \frac{1}{y} \left( g'' \cdot \left( -\frac{x}{y^2} \right) \right) = -\frac{1}{y^2} g' - \frac{x}{y^3} g'' ∂ y ∂ ( y 1 g ′ ) = − y 2 1 g ′ + y 1 ∂ y ∂ g ′ = − y 2 1 g ′ + y 1 ( g ′′ ⋅ ∂ y ∂ v ) = − y 2 1 g ′ + y 1 ( g ′′ ⋅ ( − y 2 x ) ) = − y 2 1 g ′ − y 3 x g ′′
将三项相加:∂ 2 z ∂ x ∂ y = ( f u + x y f u u − x y f u v ) + ( − 1 y 2 f v + x y f u v − x y 3 f v v ) + ( − 1 y 2 g ′ − x y 3 g ′ ′ ) \frac{\partial^2 z}{\partial x \partial y} = \left( f_u + x y f_{uu} - \frac{x}{y} f_{uv} \right) + \left( -\frac{1}{y^2} f_v + \frac{x}{y} f_{uv} - \frac{x}{y^3} f_{vv} \right) + \left( -\frac{1}{y^2} g' - \frac{x}{y^3} g'' \right) ∂ x ∂ y ∂ 2 z = ( f u + x y f uu − y x f uv ) + ( − y 2 1 f v + y x f uv − y 3 x f vv ) + ( − y 2 1 g ′ − y 3 x g ′′ )
其中
− x y f u v -\frac{x}{y} f_{uv} − y x f uv
和
x y f u v \frac{x}{y} f_{uv} y x f uv
相互抵消,得到:∂ 2 z ∂ x ∂ y = f u + x y f u u − 1 y 2 f v − x y 3 f v v − 1 y 2 g ′ − x y 3 g ′ ′ \frac{\partial^2 z}{\partial x \partial y} = f_u + x y f_{uu} - \frac{1}{y^2} f_v - \frac{x}{y^3} f_{vv} - \frac{1}{y^2} g' - \frac{x}{y^3} g'' ∂ x ∂ y ∂ 2 z = f u + x y f uu − y 2 1 f v − y 3 x f vv − y 2 1 g ′ − y 3 x g ′′
这就是所求结果。 13 计算曲线积分
I = ∮ L x d y − y d x 4 x 2 + y 2 I = \oint_L \frac{x\dy - y\dx}{4x^2 + y^2} I = ∮ L 4 x 2 + y 2 x d y − y d x
,
其中
L L L
是以点
( 1 , 0 ) \left(1,0 \right) ( 1 , 0 )
为中心,
R R R
为半径的圆周
( R > 1 ) (R > 1) ( R > 1 )
,取逆时针方向.
【答案】
π \pi π
【解析】
曲线积分
I = ∮ L x d y − y d x 4 x 2 + y 2 I = \oint_L \frac{x \, dy - y \, dx}{4x^2 + y^2} I = ∮ L 4 x 2 + y 2 x d y − y d x
中,被积函数在原点
( 0 , 0 ) (0,0) ( 0 , 0 )
处不连续,因为分母
4 x 2 + y 2 = 0 4x^2 + y^2 = 0 4 x 2 + y 2 = 0
。积分路径
L L L
是以点
( 1 , 0 ) (1,0) ( 1 , 0 )
为中心、半径为
R R R
(
R > 1 R > 1 R > 1
) 的圆周,取逆时针方向,该路径包围了原点。
考虑一个小椭圆
C C C
:
4 x 2 + y 2 = ϵ 2 4x^2 + y^2 = \epsilon^2 4 x 2 + y 2 = ϵ 2
(
ϵ > 0 \epsilon > 0 ϵ > 0
很小),参数化为
x = ϵ 2 cos θ x = \frac{\epsilon}{2} \cos \theta x = 2 ϵ cos θ
,
y = ϵ sin θ y = \epsilon \sin \theta y = ϵ sin θ
,
θ \theta θ
从
0 0 0
到
2 π 2\pi 2 π
,取逆时针方向。计算在
C C C
上的积分:
I C = ∮ C x d y − y d x 4 x 2 + y 2 = ∮ C x d y − y d x ϵ 2 . I_C = \oint_C \frac{x \, dy - y \, dx}{4x^2 + y^2} = \oint_C \frac{x \, dy - y \, dx}{\epsilon^2}. I C = ∮ C 4 x 2 + y 2 x d y − y d x = ∮ C ϵ 2 x d y − y d x . 代入参数化:
x d y − y d x = ( ϵ 2 cos θ ⋅ ϵ cos θ d θ ) − ( ϵ sin θ ⋅ ( − ϵ 2 sin θ d θ ) ) = ϵ 2 2 ( cos 2 θ + sin 2 θ ) d θ = ϵ 2 2 d θ , x \, dy - y \, dx = \left( \frac{\epsilon}{2} \cos \theta \cdot \epsilon \cos \theta \, d\theta \right) - \left( \epsilon \sin \theta \cdot \left( -\frac{\epsilon}{2} \sin \theta \, d\theta \right) \right) = \frac{\epsilon^2}{2} (\cos^2 \theta + \sin^2 \theta) \, d\theta = \frac{\epsilon^2}{2} \, d\theta, x d y − y d x = ( 2 ϵ cos θ ⋅ ϵ cos θ d θ ) − ( ϵ sin θ ⋅ ( − 2 ϵ sin θ d θ ) ) = 2 ϵ 2 ( cos 2 θ + sin 2 θ ) d θ = 2 ϵ 2 d θ , 所以
I C = ∮ C ϵ 2 2 d θ ϵ 2 = 1 2 ∫ 0 2 π d θ = π . I_C = \oint_C \frac{\frac{\epsilon^2}{2} \, d\theta}{\epsilon^2} = \frac{1}{2} \int_0^{2\pi} d\theta = \pi. I C = ∮ C ϵ 2 2 ϵ 2 d θ = 2 1 ∫ 0 2 π d θ = π . 现在,考虑区域
D D D
介于
L L L
(逆时针)和
C C C
(顺时针)之间。在
D D D
内,被积函数光滑,且之前计算偏导数:
设
P = − y 4 x 2 + y 2 P = -\frac{y}{4x^2 + y^2} P = − 4 x 2 + y 2 y
,
Q = x 4 x 2 + y 2 Q = \frac{x}{4x^2 + y^2} Q = 4 x 2 + y 2 x
,则
∂ Q ∂ x − ∂ P ∂ y = 0. \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0. ∂ x ∂ Q − ∂ y ∂ P = 0. 由格林公式,在区域
D D D
的边界上:
∮ L P d x + Q d y + ∮ C clockwise P d x + Q d y = 0. \oint_L P \, dx + Q \, dy + \oint_{C_{\text{clockwise}}} P \, dx + Q \, dy = 0. ∮ L P d x + Q d y + ∮ C clockwise P d x + Q d y = 0. 其中
∮ C clockwise P d x + Q d y = − ∮ C anticlockwise P d x + Q d y = − I C = − π \oint_{C_{\text{clockwise}}} P \, dx + Q \, dy = - \oint_{C_{\text{anticlockwise}}} P \, dx + Q \, dy = -I_C = -\pi ∮ C clockwise P d x + Q d y = − ∮ C anticlockwise P d x + Q d y = − I C = − π
。
代入得:
∮ L P d x + Q d y − π = 0 , \oint_L P \, dx + Q \, dy - \pi = 0, ∮ L P d x + Q d y − π = 0 , 所以
∮ L P d x + Q d y = π . \oint_L P \, dx + Q \, dy = \pi. ∮ L P d x + Q d y = π . 即
I = π I = \pi I = π
。
因此,曲线积分的值为
π \pi π
。
14 设对于半空间
x > 0 x > 0 x > 0
内任意的光滑有向封闭曲面
S S S
,都有
∯ S x f ( x ) d y d z − x y f ( x ) d z d x − e 2 x z d x d y = 0 , \oiint_S xf(x) \dy\dz - xyf(x)\dz\dx - \e^{2x} z\dx\dy = 0, ∬ S x f ( x ) d y d z − x y f ( x ) d z d x − e 2 x z d x d y = 0 , 其中函数
f ( x ) f(x) f ( x )
在
( 0, + ∞ ) (\text{0, +}\infty) ( 0, + ∞ )
内具有连续的一阶导数,且
lim x → 0 + f ( x ) = 1 \lim_{x \to 0^+} f(x) = 1 lim x → 0 + f ( x ) = 1
,求
f ( x ) f(x) f ( x )
.
【答案】
f ( x ) = e 2 x − e x x f(x) = \frac{e^{2x} - e^{x}}{x} f ( x ) = x e 2 x − e x 【解析】
由题设,对于半空间
x > 0 x > 0 x > 0
内任意光滑有向封闭曲面
S S S
,曲面积分
∯ S x f ( x ) d y d z − x y f ( x ) d z d x − e 2 x z d x d y = 0 \oiint_S x f(x) \, dy \, dz - x y f(x) \, dz \, dx - e^{2x} z \, dx \, dy = 0 ∬ S x f ( x ) d y d z − x y f ( x ) d z d x − e 2 x z d x d y = 0 成立。根据散度定理,该积分等于向量场
F = ( P , Q , R ) = ( x f ( x ) , − x y f ( x ) , − e 2 x z ) \mathbf{F} = (P, Q, R) = \left( x f(x), - x y f(x), - e^{2x} z \right) F = ( P , Q , R ) = ( x f ( x ) , − x y f ( x ) , − e 2 x z )
在曲面
S S S
所围体积
V V V
内的散度积分,即
∭ V ∇ ⋅ F d V = 0. \iiint_V \nabla \cdot \mathbf{F} \, dV = 0. ∭ V ∇ ⋅ F d V = 0. 由于
V V V
是任意的,必有
∇ ⋅ F = 0 \nabla \cdot \mathbf{F} = 0 ∇ ⋅ F = 0
在
x > 0 x > 0 x > 0
内成立。
计算散度:
∇ ⋅ F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = ∂ ∂ x ( x f ( x ) ) + ∂ ∂ y ( − x y f ( x ) ) + ∂ ∂ z ( − e 2 x z ) . \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \frac{\partial}{\partial x} (x f(x)) + \frac{\partial}{\partial y} (- x y f(x)) + \frac{\partial}{\partial z} (- e^{2x} z). ∇ ⋅ F = ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R = ∂ x ∂ ( x f ( x )) + ∂ y ∂ ( − x y f ( x )) + ∂ z ∂ ( − e 2 x z ) . 其中:
∂ ∂ x ( x f ( x ) ) = f ( x ) + x f ′ ( x ) , ∂ ∂ y ( − x y f ( x ) ) = − x f ( x ) , ∂ ∂ z ( − e 2 x z ) = − e 2 x . \frac{\partial}{\partial x} (x f(x)) = f(x) + x f'(x), \quad \frac{\partial}{\partial y} (- x y f(x)) = - x f(x), \quad \frac{\partial}{\partial z} (- e^{2x} z) = - e^{2x}. ∂ x ∂ ( x f ( x )) = f ( x ) + x f ′ ( x ) , ∂ y ∂ ( − x y f ( x )) = − x f ( x ) , ∂ z ∂ ( − e 2 x z ) = − e 2 x . 所以:
∇ ⋅ F = f ( x ) + x f ′ ( x ) − x f ( x ) − e 2 x = x f ′ ( x ) + ( 1 − x ) f ( x ) − e 2 x = 0. \nabla \cdot \mathbf{F} = f(x) + x f'(x) - x f(x) - e^{2x} = x f'(x) + (1 - x) f(x) - e^{2x} = 0. ∇ ⋅ F = f ( x ) + x f ′ ( x ) − x f ( x ) − e 2 x = x f ′ ( x ) + ( 1 − x ) f ( x ) − e 2 x = 0. 得到微分方程:
x f ′ ( x ) + ( 1 − x ) f ( x ) = e 2 x . x f'(x) + (1 - x) f(x) = e^{2x}. x f ′ ( x ) + ( 1 − x ) f ( x ) = e 2 x . 整理为标准形式:
f ′ ( x ) + ( 1 x − 1 ) f ( x ) = e 2 x x . f'(x) + \left( \frac{1}{x} - 1 \right) f(x) = \frac{e^{2x}}{x}. f ′ ( x ) + ( x 1 − 1 ) f ( x ) = x e 2 x . 积分因子为:
μ ( x ) = exp ( ∫ ( 1 x − 1 ) d x ) = exp ( ln x − x ) = x e − x . \mu(x) = \exp \left( \int \left( \frac{1}{x} - 1 \right) dx \right) = \exp \left( \ln x - x \right) = x e^{-x}. μ ( x ) = exp ( ∫ ( x 1 − 1 ) d x ) = exp ( ln x − x ) = x e − x . 乘以积分因子:
d d x ( x e − x f ( x ) ) = e x . \frac{d}{dx} \left( x e^{-x} f(x) \right) = e^{x}. d x d ( x e − x f ( x ) ) = e x . 积分得:
x e − x f ( x ) = ∫ e x d x = e x + C , x e^{-x} f(x) = \int e^{x} \, dx = e^{x} + C, x e − x f ( x ) = ∫ e x d x = e x + C , 即:
f ( x ) = e x + C x e − x = e 2 x + C e x x . f(x) = \frac{e^{x} + C}{x e^{-x}} = \frac{e^{2x} + C e^{x}}{x}. f ( x ) = x e − x e x + C = x e 2 x + C e x . 由条件
lim x → 0 + f ( x ) = 1 \lim_{x \to 0^+} f(x) = 1 lim x → 0 + f ( x ) = 1
,考虑
x → 0 + x \to 0^+ x → 0 +
时的渐近行为:
f ( x ) = e 2 x + C e x x = ( 1 + 2 x + ⋯ ) + C ( 1 + x + ⋯ ) x = 1 + C x + ( 2 + C ) + ⋯ . f(x) = \frac{e^{2x} + C e^{x}}{x} = \frac{(1 + 2x + \cdots) + C (1 + x + \cdots)}{x} = \frac{1 + C}{x} + (2 + C) + \cdots. f ( x ) = x e 2 x + C e x = x ( 1 + 2 x + ⋯ ) + C ( 1 + x + ⋯ ) = x 1 + C + ( 2 + C ) + ⋯ . 为使极限存在,需
1 + C = 0 1 + C = 0 1 + C = 0
,即
C = − 1 C = -1 C = − 1
。代入得:
f ( x ) = e 2 x − e x x . f(x) = \frac{e^{2x} - e^{x}}{x}. f ( x ) = x e 2 x − e x . 验证:当
x → 0 + x \to 0^+ x → 0 +
,
f ( x ) → 1 f(x) \to 1 f ( x ) → 1
,满足条件。因此所求函数为
f ( x ) = e 2 x − e x x f(x) = \frac{e^{2x} - e^{x}}{x} f ( x ) = x e 2 x − e x
。
15 求幂级数
∑ n = 1 ∞ 1 3 n + ( − 2 ) n x n n \sum_{n = 1}^{\infty}\frac{1}{3^n + (- 2)^n} \frac{x^n}{n} ∑ n = 1 ∞ 3 n + ( − 2 ) n 1 n x n
的收敛区域,并讨论该区间端点处的收敛性.
【答案】
收敛区域为
[ − 3 , 3 ) [-3, 3) [ − 3 , 3 )
,即在
x = − 3 x = -3 x = − 3
处收敛,在
x = 3 x = 3 x = 3
处发散。
【解析】
考虑幂级数
∑ n = 1 ∞ 1 3 n + ( − 2 ) n x n n \sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n} ∑ n = 1 ∞ 3 n + ( − 2 ) n 1 n x n
。令
a n = 1 n ( 3 n + ( − 2 ) n ) a_n = \frac{1}{n(3^n + (-2)^n)} a n = n ( 3 n + ( − 2 ) n ) 1
,使用比值判别法求收敛半径:
∣ a n + 1 a n ∣ = n n + 1 ⋅ ∣ 3 n + ( − 2 ) n 3 n + 1 + ( − 2 ) n + 1 ∣ . \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \cdot \left| \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} \right|. a n a n + 1 = n + 1 n ⋅ 3 n + 1 + ( − 2 ) n + 1 3 n + ( − 2 ) n . 当
n → ∞ n \to \infty n → ∞
时,
n n + 1 → 1 \frac{n}{n+1} \to 1 n + 1 n → 1
,且
∣ 3 n + ( − 2 ) n 3 n + 1 + ( − 2 ) n + 1 ∣ = ∣ 1 + ( − 2 3 ) n 3 − 2 ( − 2 3 ) n ∣ → 1 3 , \left| \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} \right| = \left| \frac{1 + \left( \frac{-2}{3} \right)^n}{3 - 2 \left( \frac{-2}{3} \right)^n} \right| \to \frac{1}{3}, 3 n + 1 + ( − 2 ) n + 1 3 n + ( − 2 ) n = 3 − 2 ( 3 − 2 ) n 1 + ( 3 − 2 ) n → 3 1 , 因为
∣ − 2 3 ∣ = 2 3 < 1 \left| \frac{-2}{3} \right| = \frac{2}{3} < 1 3 − 2 = 3 2 < 1
,故
( − 2 3 ) n → 0 \left( \frac{-2}{3} \right)^n \to 0 ( 3 − 2 ) n → 0
。因此,
∣ a n + 1 a n ∣ → 1 3 \left| \frac{a_{n+1}}{a_n} \right| \to \frac{1}{3} a n a n + 1 → 3 1
,收敛半径
R = 3 R = 3 R = 3
。级数在
∣ x ∣ < 3 |x| < 3 ∣ x ∣ < 3
时收敛,在
∣ x ∣ > 3 |x| > 3 ∣ x ∣ > 3
时发散。
在端点
x = 3 x = 3 x = 3
处,级数为
∑ n = 1 ∞ 1 n ⋅ 3 n 3 n + ( − 2 ) n \sum_{n=1}^{\infty} \frac{1}{n} \cdot \frac{3^n}{3^n + (-2)^n} ∑ n = 1 ∞ n 1 ⋅ 3 n + ( − 2 ) n 3 n
。由于
3 n 3 n + ( − 2 ) n → 1 \frac{3^n}{3^n + (-2)^n} \to 1 3 n + ( − 2 ) n 3 n → 1
,存在
N N N
使得当
n > N n > N n > N
时,
3 n 3 n + ( − 2 ) n > 1 2 \frac{3^n}{3^n + (-2)^n} > \frac{1}{2} 3 n + ( − 2 ) n 3 n > 2 1
,故通项大于
1 2 n \frac{1}{2n} 2 n 1
。而
∑ 1 2 n \sum \frac{1}{2n} ∑ 2 n 1
发散,由比较判别法,级数在
x = 3 x = 3 x = 3
处发散。
在端点
x = − 3 x = -3 x = − 3
处,级数为
∑ n = 1 ∞ ( − 1 ) n n ⋅ 3 n 3 n + ( − 2 ) n = ∑ n = 1 ∞ ( − 1 ) n n ⋅ c n \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cdot \frac{3^n}{3^n + (-2)^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cdot c_n ∑ n = 1 ∞ n ( − 1 ) n ⋅ 3 n + ( − 2 ) n 3 n = ∑ n = 1 ∞ n ( − 1 ) n ⋅ c n
,其中
c n = 1 1 + ( − 2 3 ) n c_n = \frac{1}{1 + \left( \frac{-2}{3} \right)^n} c n = 1 + ( 3 − 2 ) n 1
。由于
c n → 1 c_n \to 1 c n → 1
,令
d n = c n n d_n = \frac{c_n}{n} d n = n c n
,则级数可写为
∑ ( − 1 ) n d n \sum (-1)^n d_n ∑ ( − 1 ) n d n
。考虑
∑ ( − 1 ) n 1 n \sum (-1)^n \frac{1}{n} ∑ ( − 1 ) n n 1
收敛(交错调和级数),且
∑ ( − 1 ) n c n − 1 n \sum (-1)^n \frac{c_n - 1}{n} ∑ ( − 1 ) n n c n − 1
绝对收敛,因为
∣ c n − 1 ∣ = ∣ ( − 2 3 ) n 1 + ( − 2 3 ) n ∣ ≤ 2 ( 2 3 ) n |c_n - 1| = \left| \frac{ \left( \frac{-2}{3} \right)^n }{1 + \left( \frac{-2}{3} \right)^n } \right| \leq 2 \left( \frac{2}{3} \right)^n ∣ c n − 1∣ = 1 + ( 3 − 2 ) n ( 3 − 2 ) n ≤ 2 ( 3 2 ) n
,故
∣ c n − 1 n ∣ ≤ 2 ( 2 / 3 ) n n \left| \frac{c_n - 1}{n} \right| \leq \frac{2 (2/3)^n}{n} n c n − 1 ≤ n 2 ( 2/3 ) n
,而
∑ 2 ( 2 / 3 ) n n \sum \frac{2 (2/3)^n}{n} ∑ n 2 ( 2/3 ) n
收敛。因此,级数在
x = − 3 x = -3 x = − 3
处收敛。
综上,收敛区域为
[ − 3 , 3 ) [-3, 3) [ − 3 , 3 )
。
16 设有一半径为
R R R
的球体,
P 0 P_0 P 0
是此球的表面上的一个定点,
球体上任一点的密度与该点到
P 0 P_0 P 0
距离的平方成正比(比例常数
k > 0 k > 0 k > 0
),求球体的重心位置.
【答案】
( − R 4 , 0 , 0 ) (-\frac{R}{4}, 0, 0) ( − 4 R , 0 , 0 )
【解析】 记所考虑的球体为
Ω \Omega Ω
,以
Ω \Omega Ω
的球心为坐标原点
O O O
,射线
O P 0 OP_0 O P 0
为正
x x x
轴建立直角坐标系,则球面方程为:
x 2 + y 2 + z 2 = R 2 x^2 + y^2 + z^2 = R^2 x 2 + y 2 + z 2 = R 2
,点
P 0 P_0 P 0
的坐标为
( R , 0 , 0 ) (R, 0, 0) ( R , 0 , 0 )
,设
Ω \Omega Ω
的重心位置为
( x ‾ , y ‾ , z ‾ ) (\overline{x}, \overline{y}, \overline{z}) ( x , y , z )
,由对称性,得
y ‾ = 0 , z ‾ = 0 \overline{y} = 0, \overline{z} = 0 y = 0 , z = 0
,设
μ \mu μ
为
Ω \Omega Ω
上点
( x , y , z ) (x, y, z) ( x , y , z )
处的密度,按题设
μ = k [ ( x − R ) 2 + y 2 + z 2 ] \mu = k[(x - R)^2 + y^2 + z^2] μ = k [( x − R ) 2 + y 2 + z 2 ]
,则
x ‾ = ∭ Ω x μ d v ∭ Ω μ d v = ∭ Ω x ⋅ k [ ( x − R ) 2 + y 2 + z 2 ] d v ∭ Ω k [ ( x − R ) 2 + y 2 + z 2 ] d v \overline{x} = \frac{\iiint_{\Omega} x \mu \, dv}{\iiint_{\Omega} \mu \, dv} = \frac{\iiint_{\Omega} x \cdot k[(x - R)^2 + y^2 + z^2] \, dv}{\iiint_{\Omega} k[(x - R)^2 + y^2 + z^2] \, dv} x = ∭ Ω μ d v ∭ Ω xμ d v = ∭ Ω k [( x − R ) 2 + y 2 + z 2 ] d v ∭ Ω x ⋅ k [( x − R ) 2 + y 2 + z 2 ] d v 分别计算分子和分母的两个积分得
∭ Ω k [ ( x − R ) 2 + y 2 + z 2 ] d v = ∭ Ω k ( x 2 + y 2 + z 2 + R 2 ) d v − 2 k R ∭ Ω x d v = k ∭ Ω ( x 2 + y 2 + z 2 ) d v + k ∭ Ω R 2 d v − 0 = 8 k ∫ 0 π / 2 d θ ∫ 0 π / 2 d φ ∫ 0 R r 2 ⋅ r 2 sin φ d r + 4 k 3 π R 5 = 4 k π R 5 5 + 4 k 3 π R 5 = 32 15 k π R 5 , ∭ Ω k x [ ( x − R ) 2 + y 2 + z 2 ] d v = k ∭ Ω x ( x 2 + y 2 + z 2 + R 2 ) d v − 2 k R ∭ Ω x 2 d v = 0 − 2 k R 3 ∭ Ω ( x 2 + y 2 + z 2 ) d v
\begin{aligned}
\iiint_{\Omega} k[(x - R)^2 + y^2 + z^2] \, dv
&= \iiint_{\Omega} k(x^2 + y^2 + z^2 + R^2) \, dv - 2kR \iiint_{\Omega} x \, dv \\
&= k \iiint_{\Omega} (x^2 + y^2 + z^2) \, dv + k \iiint_{\Omega} R^2 \, dv - 0 \\
&= 8k \int_{0}^{\pi/2} d\theta \int_{0}^{\pi/2} d\varphi \int_{0}^{R} r^2 \cdot r^2 \sin \varphi \, dr + \frac{4k}{3} \pi R^5 \\
&= \frac{4k\pi R^5}{5} + \frac{4k}{3} \pi R^5 = \frac{32}{15} k \pi R^5, \\
\iiint_{\Omega} kx[(x - R)^2 + y^2 + z^2] \, dv
&= k \iiint_{\Omega} x(x^2 + y^2 + z^2 + R^2) \, dv - 2kR \iiint_{\Omega} x^2 \, dv \\
&= 0 - \frac{2kR}{3} \iiint_{\Omega} (x^2 + y^2 + z^2) \, dv
\end{aligned}
∭ Ω k [( x − R ) 2 + y 2 + z 2 ] d v ∭ Ω k x [( x − R ) 2 + y 2 + z 2 ] d v = ∭ Ω k ( x 2 + y 2 + z 2 + R 2 ) d v − 2 k R ∭ Ω x d v = k ∭ Ω ( x 2 + y 2 + z 2 ) d v + k ∭ Ω R 2 d v − 0 = 8 k ∫ 0 π /2 d θ ∫ 0 π /2 d φ ∫ 0 R r 2 ⋅ r 2 sin φ d r + 3 4 k π R 5 = 5 4 kπ R 5 + 3 4 k π R 5 = 15 32 kπ R 5 , = k ∭ Ω x ( x 2 + y 2 + z 2 + R 2 ) d v − 2 k R ∭ Ω x 2 d v = 0 − 3 2 k R ∭ Ω ( x 2 + y 2 + z 2 ) d v 故
= − 2 k R 3 ⋅ 4 5 π R 5 = − 8 15 k π R 6 .
= -\frac{2kR}{3} \cdot \frac{4}{5} \pi R^5 = -\frac{8}{15} k \pi R^6.
= − 3 2 k R ⋅ 5 4 π R 5 = − 15 8 kπ R 6 .
x ‾ = − R 4 .
\overline{x} = -\frac{R}{4}.
x = − 4 R . 因此球体
Ω \Omega Ω
的重心位置为
( − R 4 , 0 , 0 ) (-\frac{R}{4}, 0, 0) ( − 4 R , 0 , 0 )
。
17 设函数
f ( x ) f(x) f ( x )
在
[ 0 , π ] \left[0,\pi \right] [ 0 , π ]
上连续,且
∫ 0 π f ( x ) d x = 0 \int_0^{\pi}f(x)\dx = 0 ∫ 0 π f ( x ) d x = 0
,
∫ 0 π f ( x ) cos x d x = 0 \int_0^{\pi}f(x)\cos x\dx = 0 ∫ 0 π f ( x ) cos x d x = 0
.
试证:在
( 0 , π ) (0,\pi) ( 0 , π )
内至少存在两个不同的点
ξ 1 , ξ 2 \xi_1,\xi_2 ξ 1 , ξ 2
,使
f ( ξ 1 ) = f ( ξ 2 ) = 0 f(\xi_1) = f(\xi_2) = 0 f ( ξ 1 ) = f ( ξ 2 ) = 0
.
【解析】
令
F ( x ) = ∫ 0 x f ( t ) d t , 0 ≤ x ≤ π F(x) = \int_{0}^{x} f(t) dt, 0 \leq x \leq \pi F ( x ) = ∫ 0 x f ( t ) d t , 0 ≤ x ≤ π
,则有
F ( 0 ) = 0 F(0) = 0 F ( 0 ) = 0
和
F ( π ) = 0 F(\pi) = 0 F ( π ) = 0
。又由题设,用分部积分有
0 = ∫ 0 π f ( x ) cos x d x = ∫ 0 π cos x d F ( x )
0 = \int_{0}^{\pi} f(x) \cos x \, dx = \int_{0}^{\pi} \cos x dF(x)
0 = ∫ 0 π f ( x ) cos x d x = ∫ 0 π cos x d F ( x )
= F ( x ) cos x ∣ 0 π + ∫ 0 π F ( x ) sin x d x = ∫ 0 π F ( x ) sin x d x
= F(x) \cos x \bigg|_{0}^{\pi} + \int_{0}^{\pi} F(x) \sin x \, dx = \int_{0}^{\pi} F(x) \sin x \, dx
= F ( x ) cos x 0 π + ∫ 0 π F ( x ) sin x d x = ∫ 0 π F ( x ) sin x d x 由积分中值定理知,存在
ξ ∈ ( 0 , π ) \xi \in (0,\pi) ξ ∈ ( 0 , π )
使
0 = ∫ 0 π F ( x ) sin x d x = F ( ξ ) sin ξ ⋅ ( π − 0 )
0 = \int_{0}^{\pi} F(x) \sin x \, dx = F(\xi) \sin \xi \cdot (\pi - 0)
0 = ∫ 0 π F ( x ) sin x d x = F ( ξ ) sin ξ ⋅ ( π − 0 ) 因为
ξ ∈ ( 0 , π ) , sin ξ ≠ 0 \xi \in (0,\pi), \sin \xi \neq 0 ξ ∈ ( 0 , π ) , sin ξ = 0
,所以推知存在
ξ ∈ ( 0 , π ) \xi \in (0,\pi) ξ ∈ ( 0 , π )
,使得
F ( ξ ) = 0 F(\xi) = 0 F ( ξ ) = 0
。再在区间
[ 0 , ξ ] [0,\xi] [ 0 , ξ ]
与
[ ξ , π ] [\xi,\pi] [ ξ , π ]
上对
F ( x ) F(x) F ( x )
用罗尔定理,推知存在
ξ 1 ∈ ( 0 , ξ ) , ξ 2 ∈ ( ξ , π ) \xi_1 \in (0,\xi), \xi_2 \in (\xi,\pi) ξ 1 ∈ ( 0 , ξ ) , ξ 2 ∈ ( ξ , π )
使得
F ′ ( ξ 1 ) = 0 , F ′ ( ξ 2 ) = 0 F'(\xi_1) = 0, F'(\xi_2) = 0 F ′ ( ξ 1 ) = 0 , F ′ ( ξ 2 ) = 0
,即
f ( ξ 1 ) = 0 , f ( ξ 2 ) = 0 f(\xi_1) = 0, f(\xi_2) = 0 f ( ξ 1 ) = 0 , f ( ξ 2 ) = 0
。
18 设矩阵
A A A
的伴随矩阵
A ∗ = ( 1 0 0 0 0 1 0 0 1 0 1 0 0 − 3 0 8 ) A^* = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & -3 & 0 & 8
\end{pmatrix} A ∗ = 1 0 1 0 0 1 0 − 3 0 0 1 0 0 0 0 8
,且
A B A − 1 = B A − 1 + 3 E AB A^{-1} = BA^{-1} + 3E A B A − 1 = B A − 1 + 3 E
,其中
E E E
为
4 4 4
阶单位矩阵,求矩阵
B B B
.
【答案】
B = ( 6 0 0 0 0 6 0 0 6 0 6 0 0 3 0 − 1 ) B = \begin{pmatrix}
6 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
6 & 0 & 6 & 0 \\
0 & 3 & 0 & -1
\end{pmatrix} B = 6 0 6 0 0 6 0 3 0 0 6 0 0 0 0 − 1 【解析】
给定伴随矩阵
A ∗ = ( 1 0 0 0 0 1 0 0 1 0 1 0 0 − 3 0 8 ) A^* = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & -3 & 0 & 8
\end{pmatrix} A ∗ = 1 0 1 0 0 1 0 − 3 0 0 1 0 0 0 0 8
,且
A B A − 1 = B A − 1 + 3 E ABA^{-1} = BA^{-1} + 3E A B A − 1 = B A − 1 + 3 E
,其中
E E E
为 4 阶单位矩阵。
首先,由伴随矩阵的性质
A A ∗ = ∣ A ∣ E A A^* = |A| E A A ∗ = ∣ A ∣ E
,计算
∣ A ∗ ∣ |A^*| ∣ A ∗ ∣
:
∣ A ∗ ∣ = ∣ 1 0 0 0 0 1 0 0 1 0 1 0 0 − 3 0 8 ∣ = 1 ⋅ ∣ 1 0 0 0 1 0 − 3 0 8 ∣ = 1 ⋅ ( 1 ⋅ ∣ 1 0 0 8 ∣ ) = 1 ⋅ ( 1 ⋅ 8 ) = 8. |A^*| = \begin{vmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & -3 & 0 & 8
\end{vmatrix} = 1 \cdot \begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\ -3 & 0 & 8
\end{vmatrix} = 1 \cdot (1 \cdot \begin{vmatrix}
1 & 0 \\
0 & 8
\end{vmatrix}) = 1 \cdot (1 \cdot 8) = 8. ∣ A ∗ ∣ = 1 0 1 0 0 1 0 − 3 0 0 1 0 0 0 0 8 = 1 ⋅ 1 0 − 3 0 1 0 0 0 8 = 1 ⋅ ( 1 ⋅ 1 0 0 8 ) = 1 ⋅ ( 1 ⋅ 8 ) = 8. 又
∣ A ∗ ∣ = ∣ A ∣ 3 |A^*| = |A|^{3} ∣ A ∗ ∣ = ∣ A ∣ 3
,所以
∣ A ∣ 3 = 8 |A|^3 = 8 ∣ A ∣ 3 = 8
,得
∣ A ∣ = 2 |A| = 2 ∣ A ∣ = 2
。
由
A A ∗ = 2 E A A^* = 2E A A ∗ = 2 E
,得
A = 2 ( A ∗ ) − 1 A = 2 (A^*)^{-1} A = 2 ( A ∗ ) − 1
。计算
( A ∗ ) − 1 (A^*)^{-1} ( A ∗ ) − 1
:
通过行简化求逆:
[ A ∗ ∣ I ] = ( 1 0 0 0 ∣ 1 0 0 0 0 1 0 0 ∣ 0 1 0 0 1 0 1 0 ∣ 0 0 1 0 0 − 3 0 8 ∣ 0 0 0 1 ) [A^* | I] = \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & | & 0 & 0 & 1 & 0 \\
0 & -3 & 0 & 8 & | & 0 & 0 & 0 & 1
\end{pmatrix} [ A ∗ ∣ I ] = 1 0 1 0 0 1 0 − 3 0 0 1 0 0 0 0 8 ∣ ∣ ∣ ∣ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 行变换后得:
( A ∗ ) − 1 = ( 1 0 0 0 0 1 0 0 − 1 0 1 0 0 3 8 0 1 8 ) . (A^*)^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\
0 & \frac{3}{8} & 0 & \frac{1}{8}
\end{pmatrix}. ( A ∗ ) − 1 = 1 0 − 1 0 0 1 0 8 3 0 0 1 0 0 0 0 8 1 . 于是,
A = 2 ( A ∗ ) − 1 = ( 2 0 0 0 0 2 0 0 − 2 0 2 0 0 3 4 0 1 4 ) . A = 2 (A^*)^{-1} = \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\ -2 & 0 & 2 & 0 \\
0 & \frac{3}{4} & 0 & \frac{1}{4}
\end{pmatrix}. A = 2 ( A ∗ ) − 1 = 2 0 − 2 0 0 2 0 4 3 0 0 2 0 0 0 0 4 1 . 由方程
A B A − 1 = B A − 1 + 3 E ABA^{-1} = BA^{-1} + 3E A B A − 1 = B A − 1 + 3 E
,右乘
A A A
得:
A B = B + 3 A . AB = B + 3A. A B = B + 3 A . 整理得:
A B − B = 3 A ⟹ ( A − E ) B = 3 A . AB - B = 3A \implies (A - E)B = 3A. A B − B = 3 A ⟹ ( A − E ) B = 3 A . 其中
E E E
为单位矩阵,故
A − E = ( 1 0 0 0 0 1 0 0 − 2 0 1 0 0 3 4 0 − 3 4 ) . A - E = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\
0 & \frac{3}{4} & 0 & -\frac{3}{4}
\end{pmatrix}. A − E = 1 0 − 2 0 0 1 0 4 3 0 0 1 0 0 0 0 − 4 3 . 求
( A − E ) − 1 (A - E)^{-1} ( A − E ) − 1
:
通过行简化求逆:
[ A − E ∣ I ] = ( 1 0 0 0 ∣ 1 0 0 0 0 1 0 0 ∣ 0 1 0 0 − 2 0 1 0 ∣ 0 0 1 0 0 3 4 0 − 3 4 ∣ 0 0 0 1 ) [A - E | I] = \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 & | & 0 & 0 & 1 & 0 \\
0 & \frac{3}{4} & 0 & -\frac{3}{4} & | & 0 & 0 & 0 & 1
\end{pmatrix} [ A − E ∣ I ] = 1 0 − 2 0 0 1 0 4 3 0 0 1 0 0 0 0 − 4 3 ∣ ∣ ∣ ∣ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 行变换后得:
( A − E ) − 1 = ( 1 0 0 0 0 1 0 0 2 0 1 0 0 1 0 − 4 3 ) . (A - E)^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{4}{3}
\end{pmatrix}. ( A − E ) − 1 = 1 0 2 0 0 1 0 1 0 0 1 0 0 0 0 − 3 4 . 计算
( A − E ) − 1 A (A - E)^{-1} A ( A − E ) − 1 A
:
( A − E ) − 1 A = ( 1 0 0 0 0 1 0 0 2 0 1 0 0 1 0 − 4 3 ) ( 2 0 0 0 0 2 0 0 − 2 0 2 0 0 3 4 0 1 4 ) = ( 2 0 0 0 0 2 0 0 2 0 2 0 0 1 0 − 1 3 ) . (A - E)^{-1} A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{4}{3}
\end{pmatrix} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\ -2 & 0 & 2 & 0 \\
0 & \frac{3}{4} & 0 & \frac{1}{4}
\end{pmatrix} = \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
0 & 1 & 0 & -\frac{1}{3}
\end{pmatrix}. ( A − E ) − 1 A = 1 0 2 0 0 1 0 1 0 0 1 0 0 0 0 − 3 4 2 0 − 2 0 0 2 0 4 3 0 0 2 0 0 0 0 4 1 = 2 0 2 0 0 2 0 1 0 0 2 0 0 0 0 − 3 1 . 于是,
B = 3 ( A − E ) − 1 A = 3 ( 2 0 0 0 0 2 0 0 2 0 2 0 0 1 0 − 1 3 ) = ( 6 0 0 0 0 6 0 0 6 0 6 0 0 3 0 − 1 ) . B = 3 (A - E)^{-1} A = 3 \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
0 & 1 & 0 & -\frac{1}{3}
\end{pmatrix} = \begin{pmatrix}
6 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
6 & 0 & 6 & 0 \\
0 & 3 & 0 & -1
\end{pmatrix}. B = 3 ( A − E ) − 1 A = 3 2 0 2 0 0 2 0 1 0 0 2 0 0 0 0 − 3 1 = 6 0 6 0 0 6 0 3 0 0 6 0 0 0 0 − 1 . 因此,矩阵
B B B
为:
B = ( 6 0 0 0 0 6 0 0 6 0 6 0 0 3 0 − 1 ) . B = \begin{pmatrix}
6 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
6 & 0 & 6 & 0 \\
0 & 3 & 0 & -1
\end{pmatrix}. B = 6 0 6 0 0 6 0 3 0 0 6 0 0 0 0 − 1 . 19 某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,
然后将
1 6 \frac{1}{6} 6 1
熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐,
新、老非熟练工经过培训及实践至年终考核有
2 5 \frac{2}{5} 5 2
成为熟练工.
设第
n n n
年一月份统计的熟练工和非熟练工所占百分比分别为
x n , x_n, x n ,
y n y_n y n
记成向量
( x n y n ) \begin{pmatrix}
x_n \\
y_n
\end{pmatrix} ( x n y n )
.
(1) 求
( x n + 1 y n + 1 ) \begin{pmatrix}
x_{n + 1} \\
y_{n + 1}
\end{pmatrix} ( x n + 1 y n + 1 )
与
( x n y n ) \begin{pmatrix}
x_n \\
y_n
\end{pmatrix} ( x n y n )
的关系式并写成矩阵形式:
( x n + 1 y n + 1 ) = A ( x n y n ) ; \begin{pmatrix}
x_{n + 1} \\
y_{n + 1}
\end{pmatrix} = A\begin{pmatrix}
x_n \\
y_n
\end{pmatrix}; ( x n + 1 y n + 1 ) = A ( x n y n ) ;
(2) 验证
η 1 = ( 4 1 ) , η 2 = ( − 1 1 ) \eta_1 = \begin{pmatrix}
4 \\
1
\end{pmatrix},\eta_2 = \begin{pmatrix}
-1 \\
1
\end{pmatrix} η 1 = ( 4 1 ) , η 2 = ( − 1 1 )
是
A A A
的两个线性无关的特征向量,并求出相应的特征值;
(3) 当
( x 1 y 1 ) = ( 1 2 1 2 ) \begin{pmatrix}
x_1 \\
y_1
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix} ( x 1 y 1 ) = ( 2 1 2 1 )
时,求
( x n + 1 y n + 1 ) . \begin{pmatrix}
x_{n + 1} \\
y_{n + 1}
\end{pmatrix}. ( x n + 1 y n + 1 ) .
【答案】
(1)
( x n + 1 y n + 1 ) = ( 9 10 2 5 1 10 3 5 ) ( x n y n ) \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} ( x n + 1 y n + 1 ) = ( 10 9 10 1 5 2 5 3 ) ( x n y n ) 即
A = ( 9 10 2 5 1 10 3 5 ) A = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} A = ( 10 9 10 1 5 2 5 3 ) (2)
η 1 = ( 4 1 ) \eta_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix} η 1 = ( 4 1 )
是特征向量,特征值为
1 1 1
;
η 2 = ( − 1 1 ) \eta_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} η 2 = ( − 1 1 )
是特征向量,特征值为
1 2 \frac{1}{2} 2 1
。两者线性无关。
(3)
( x n + 1 y n + 1 ) = ( 4 5 − 3 10 ( 1 2 ) n 1 5 + 3 10 ( 1 2 ) n ) \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{4}{5} - \frac{3}{10} \left( \frac{1}{2} \right)^n \\ \frac{1}{5} + \frac{3}{10} \left( \frac{1}{2} \right)^n \end{pmatrix} ( x n + 1 y n + 1 ) = ( 5 4 − 10 3 ( 2 1 ) n 5 1 + 10 3 ( 2 1 ) n ) 【解析】
(1) 设第
n n n
年一月份熟练工和非熟练工的比例分别为
x n x_n x n
和
y n y_n y n
,且
x n + y n = 1 x_n + y_n = 1 x n + y n = 1
。支援后熟练工变为
5 6 x n \frac{5}{6} x_n 6 5 x n
,非熟练工变为
y n + 1 6 x n y_n + \frac{1}{6} x_n y n + 6 1 x n
。经过培训,有
2 5 \frac{2}{5} 5 2
的非熟练工成为熟练工,因此:
x n + 1 = 5 6 x n + 2 5 ( y n + 1 6 x n ) = 9 10 x n + 2 5 y n x_{n+1} = \frac{5}{6} x_n + \frac{2}{5} \left( y_n + \frac{1}{6} x_n \right) = \frac{9}{10} x_n + \frac{2}{5} y_n x n + 1 = 6 5 x n + 5 2 ( y n + 6 1 x n ) = 10 9 x n + 5 2 y n
y n + 1 = 3 5 ( y n + 1 6 x n ) = 1 10 x n + 3 5 y n y_{n+1} = \frac{3}{5} \left( y_n + \frac{1}{6} x_n \right) = \frac{1}{10} x_n + \frac{3}{5} y_n y n + 1 = 5 3 ( y n + 6 1 x n ) = 10 1 x n + 5 3 y n 写成矩阵形式:
( x n + 1 y n + 1 ) = ( 9 10 2 5 1 10 3 5 ) ( x n y n ) \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} ( x n + 1 y n + 1 ) = ( 10 9 10 1 5 2 5 3 ) ( x n y n ) 所以
A = ( 9 10 2 5 1 10 3 5 ) A = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} A = ( 10 9 10 1 5 2 5 3 )
.
(2) 计算
A η 1 A \eta_1 A η 1
:
A η 1 = ( 9 10 2 5 1 10 3 5 ) ( 4 1 ) = ( 9 10 × 4 + 2 5 × 1 1 10 × 4 + 3 5 × 1 ) = ( 4 1 ) = 1 ⋅ η 1 A \eta_1 = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{9}{10} \times 4 + \frac{2}{5} \times 1 \\ \frac{1}{10} \times 4 + \frac{3}{5} \times 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 1 \cdot \eta_1 A η 1 = ( 10 9 10 1 5 2 5 3 ) ( 4 1 ) = ( 10 9 × 4 + 5 2 × 1 10 1 × 4 + 5 3 × 1 ) = ( 4 1 ) = 1 ⋅ η 1 所以
η 1 \eta_1 η 1
的特征值为
1 1 1
。计算
A η 2 A \eta_2 A η 2
:
A η 2 = ( 9 10 2 5 1 10 3 5 ) ( − 1 1 ) = ( − 9 10 + 2 5 − 1 10 + 3 5 ) = ( − 1 2 1 2 ) = 1 2 ⋅ η 2 A \eta_2 = \begin{pmatrix} \frac{9}{10} & \frac{2}{5} \\ \frac{1}{10} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{9}{10} + \frac{2}{5} \\ -\frac{1}{10} + \frac{3}{5} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \frac{1}{2} \cdot \eta_2 A η 2 = ( 10 9 10 1 5 2 5 3 ) ( − 1 1 ) = ( − 10 9 + 5 2 − 10 1 + 5 3 ) = ( − 2 1 2 1 ) = 2 1 ⋅ η 2 所以
η 2 \eta_2 η 2
的特征值为
1 2 \frac{1}{2} 2 1
。
η 1 \eta_1 η 1
和
η 2 \eta_2 η 2
线性无关,因为它们不成比例。
(3) 初始向量
( x 1 y 1 ) = ( 1 2 1 2 ) \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} ( x 1 y 1 ) = ( 2 1 2 1 )
。将其表示为特征向量的线性组合:
( 1 2 1 2 ) = c 1 ( 4 1 ) + c 2 ( − 1 1 ) \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = c_1 \begin{pmatrix} 4 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} ( 2 1 2 1 ) = c 1 ( 4 1 ) + c 2 ( − 1 1 ) 解得:
4 c 1 − c 2 = 1 2 , c 1 + c 2 = 1 2 4c_1 - c_2 = \frac{1}{2}, \quad c_1 + c_2 = \frac{1}{2} 4 c 1 − c 2 = 2 1 , c 1 + c 2 = 2 1 求解得
c 1 = 1 5 c_1 = \frac{1}{5} c 1 = 5 1
,
c 2 = 3 10 c_2 = \frac{3}{10} c 2 = 10 3
。因此:
( x n + 1 y n + 1 ) = A n ( x 1 y 1 ) = A n ( 1 5 η 1 + 3 10 η 2 ) = 1 5 A n η 1 + 3 10 A n η 2 = 1 5 η 1 + 3 10 ( 1 2 ) n η 2 \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A^n \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = A^n \left( \frac{1}{5} \eta_1 + \frac{3}{10} \eta_2 \right) = \frac{1}{5} A^n \eta_1 + \frac{3}{10} A^n \eta_2 = \frac{1}{5} \eta_1 + \frac{3}{10} \left( \frac{1}{2} \right)^n \eta_2 ( x n + 1 y n + 1 ) = A n ( x 1 y 1 ) = A n ( 5 1 η 1 + 10 3 η 2 ) = 5 1 A n η 1 + 10 3 A n η 2 = 5 1 η 1 + 10 3 ( 2 1 ) n η 2 代入
η 1 \eta_1 η 1
和
η 2 \eta_2 η 2
:
= 1 5 ( 4 1 ) + 3 10 ( 1 2 ) n ( − 1 1 ) = ( 4 5 − 3 10 ( 1 2 ) n 1 5 + 3 10 ( 1 2 ) n ) = \frac{1}{5} \begin{pmatrix} 4 \\ 1 \end{pmatrix} + \frac{3}{10} \left( \frac{1}{2} \right)^n \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} - \frac{3}{10} \left( \frac{1}{2} \right)^n \\ \frac{1}{5} + \frac{3}{10} \left( \frac{1}{2} \right)^n \end{pmatrix} = 5 1 ( 4 1 ) + 10 3 ( 2 1 ) n ( − 1 1 ) = ( 5 4 − 10 3 ( 2 1 ) n 5 1 + 10 3 ( 2 1 ) n ) 20 某流水生产线上每个产品不合格的概率为
p p p
(
0 < p < 1 0 < p < 1 0 < p < 1
),各产品合格与否相互独立,
当出现一个不合格产品时即停机检修.设开机后第一次停机时已生产了产品的个数为
X X X
,求
X X X
的数学期望
E ( X ) E(X) E ( X )
和方差
D ( X ) D(X) D ( X )
.
【答案】
E ( X ) = 1 p E(X) = \frac{1}{p} E ( X ) = p 1 D ( X ) = 1 − p p 2 D(X) = \frac{1-p}{p^2} D ( X ) = p 2 1 − p 【解析】 记
q = 1 − p q = 1 - p q = 1 − p
,
X X X
的概率分布为
P { X = k } = q k − 1 p , ( k = 1 , 2 , ⋯ ) P\{X = k\} = q^{k-1}p, (k = 1, 2, \cdots) P { X = k } = q k − 1 p , ( k = 1 , 2 , ⋯ )
。由离散型随机变量的数学期望定义得,
X X X
的数学期望为
E ( X ) = ∑ k = 1 ∞ k P { X = k } = ∑ k = 1 ∞ k q k − 1 p = p ∑ k = 1 ∞ ( q k ) ′
E(X) = \sum_{k=1}^{\infty} kP\{X = k\} = \sum_{k=1}^{\infty} kq^{k-1}p = p \sum_{k=1}^{\infty} (q^k)'
E ( X ) = k = 1 ∑ ∞ k P { X = k } = k = 1 ∑ ∞ k q k − 1 p = p k = 1 ∑ ∞ ( q k ) ′
= p ( ∑ k = 1 ∞ q k ) ′ = p ( q 1 − q ) ′ = 1 p
= p \left( \sum_{k=1}^{\infty} q^k \right)' = p \left( \frac{q}{1-q} \right)' = \frac{1}{p}
= p ( k = 1 ∑ ∞ q k ) ′ = p ( 1 − q q ) ′ = p 1 因为
E ( X 2 ) = ∑ k = 1 ∞ k 2 P { X = k } = ∑ k = 1 ∞ k 2 q k − 1 p = p [ q ( ∑ k = 1 ∞ q k ) ′ ]
E(X^2) = \sum_{k=1}^{\infty} k^2P\{X = k\} = \sum_{k=1}^{\infty} k^2q^{k-1}p = p \left[ q \left( \sum_{k=1}^{\infty} q^k \right)' \right]
E ( X 2 ) = k = 1 ∑ ∞ k 2 P { X = k } = k = 1 ∑ ∞ k 2 q k − 1 p = p [ q ( k = 1 ∑ ∞ q k ) ′ ]
= p ( q ( 1 − q ) 2 ) ′ = 2 − p p 2
= p \left( \frac{q}{(1-q)^2} \right)' = \frac{2-p}{p^2}
= p ( ( 1 − q ) 2 q ) ′ = p 2 2 − p 故
X X X
的方差为
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 2 − p p 2 − 1 p 2 = 1 − p p 2
D(X) = E(X^2) - [E(X)]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = p 2 2 − p − p 2 1 = p 2 1 − p 21 设某种元件的使用寿命
X X X
的概率密度为
f ( x ; θ ) = { 2 e − 2 ( x − θ ) , x ≥ θ 0 , x < θ f(x;\theta) = \begin{cases}
2\e^{- 2(x - \theta)},x \ge \theta \\
0, x < \theta
\end{cases} f ( x ; θ ) = { 2 e − 2 ( x − θ ) , x ≥ θ 0 , x < θ
其中
θ > 0 \theta > 0 θ > 0
为未知参数,又设
x 1 , x 2 , ⋅ ⋅ ⋅ , x n x_1,x_2, \cdot \cdot \cdot ,x_n x 1 , x 2 , ⋅ ⋅ ⋅ , x n
是
X X X
的一组样本观测值,
求参数
θ \theta θ
的最大似然估计值.
【答案】
θ ^ = min { x 1 , x 2 , … , x n } \hat{\theta} = \min\{x_1, x_2, \ldots, x_n\} θ ^ = min { x 1 , x 2 , … , x n } 【解析】
似然函数为
L ( θ ) = ∏ i = 1 n f ( x i ; θ ) L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) L ( θ ) = ∏ i = 1 n f ( x i ; θ )
。由于当
x < θ x < \theta x < θ
时
f ( x ; θ ) = 0 f(x; \theta) = 0 f ( x ; θ ) = 0
,因此为了使似然函数非零,必须满足
θ ≤ x i \theta \leq x_i θ ≤ x i
对于所有
i i i
,即
θ ≤ min { x 1 , x 2 , … , x n } \theta \leq \min\{x_1, x_2, \ldots, x_n\} θ ≤ min { x 1 , x 2 , … , x n }
。记
x ( 1 ) = min { x 1 , x 2 , … , x n } x_{(1)} = \min\{x_1, x_2, \ldots, x_n\} x ( 1 ) = min { x 1 , x 2 , … , x n }
,则当
θ ≤ x ( 1 ) \theta \leq x_{(1)} θ ≤ x ( 1 )
时,似然函数为:
L ( θ ) = ∏ i = 1 n 2 e − 2 ( x i − θ ) = 2 n e − 2 ∑ i = 1 n ( x i − θ ) = 2 n e − 2 ∑ x i e 2 n θ . L(\theta) = \prod_{i=1}^{n} 2e^{-2(x_i - \theta)} = 2^n e^{-2 \sum_{i=1}^{n} (x_i - \theta)} = 2^n e^{-2 \sum x_i} e^{2n\theta}. L ( θ ) = i = 1 ∏ n 2 e − 2 ( x i − θ ) = 2 n e − 2 ∑ i = 1 n ( x i − θ ) = 2 n e − 2 ∑ x i e 2 n θ . 取对数似然函数:
l ( θ ) = ln L ( θ ) = n ln 2 − 2 ∑ x i + 2 n θ . l(\theta) = \ln L(\theta) = n \ln 2 - 2 \sum x_i + 2n\theta. l ( θ ) = ln L ( θ ) = n ln 2 − 2 ∑ x i + 2 n θ . 由于
l ( θ ) l(\theta) l ( θ )
是
θ \theta θ
的线性递增函数(因为
2 n > 0 2n > 0 2 n > 0
),且在约束
θ ≤ x ( 1 ) \theta \leq x_{(1)} θ ≤ x ( 1 )
下,因此
l ( θ ) l(\theta) l ( θ )
在
θ = x ( 1 ) \theta = x_{(1)} θ = x ( 1 )
处取得最大值。故参数
θ \theta θ
的最大似然估计值为
θ ^ = x ( 1 ) \hat{\theta} = x_{(1)} θ ^ = x ( 1 )
。