卷 1 填空题 1~6小题,每小题4分,共24分
1 曲线
y = ln x y = \ln x y = ln x
上与直线
x + y = 1 x + y = 1 x + y = 1
垂直的切线方程为 ______.
【答案】
y = x − 1 y = x - 1 y = x − 1
【解析】 首先,将直线
x + y = 1 x + y = 1 x + y = 1
化为斜截式:
y = − x + 1 y = -x + 1 y = − x + 1
,其斜率为 -1。与之垂直的直线斜率应满足乘积为 -1,即斜率为 1。曲线
y = ln x y = \ln x y = ln x
的导数为
y ′ = 1 x y' = \frac{1}{x} y ′ = x 1
,令导数值等于切线斜率 1,即
1 x = 1 \frac{1}{x} = 1 x 1 = 1
,解得
x = 1 x = 1 x = 1
。代入曲线方程得
y = ln 1 = 0 y = \ln 1 = 0 y = ln 1 = 0
,因此切点为 (1, 0)。由点斜式得切线方程:
y − 0 = 1 ⋅ ( x − 1 ) y - 0 = 1 \cdot (x - 1) y − 0 = 1 ⋅ ( x − 1 )
,即
y = x − 1 y = x - 1 y = x − 1
。
2 已知
f ′ ( e x ) = x e − x f'(\e^x) = x\e^{- x} f ′ ( e x ) = x e − x
,且
f ( 1 ) = 0 f(1) = 0 f ( 1 ) = 0
,则
f ( x ) = f(x) = f ( x ) =
______.
【答案】
1 2 ( ln x ) 2 \frac{1}{2} (\ln x)^2 2 1 ( ln x ) 2
【解析】 已知
f ′ ( e x ) = x e − x f'(\e^x) = x \e^{-x} f ′ ( e x ) = x e − x
,令
u = e x u = \e^x u = e x
,则
x = ln u x = \ln u x = ln u
,代入得
f ′ ( u ) = ( ln u ) e − ln u = ln u u f'(u) = (\ln u) \e^{-\ln u} = \frac{\ln u}{u} f ′ ( u ) = ( ln u ) e − l n u = u l n u
。因此,
f ′ ( x ) = ln x x f'(x) = \frac{\ln x}{x} f ′ ( x ) = x l n x
。 对
f ′ ( x ) f'(x) f ′ ( x )
积分,得
f ( x ) = ∫ ln x x d x f(x) = \int \frac{\ln x}{x} \, dx f ( x ) = ∫ x l n x d x
。令
t = ln x t = \ln x t = ln x
,则
d t = 1 x d x dt = \frac{1}{x} dx d t = x 1 d x
,积分化为
∫ t d t = t 2 2 + C = ( ln x ) 2 2 + C \int t \, dt = \frac{t^2}{2} + C = \frac{(\ln x)^2}{2} + C ∫ t d t = 2 t 2 + C = 2 ( l n x ) 2 + C
。 由初始条件
f ( 1 ) = 0 f(1) = 0 f ( 1 ) = 0
,代入
x = 1 x = 1 x = 1
,得
( ln 1 ) 2 2 + C = 0 \frac{(\ln 1)^2}{2} + C = 0 2 ( l n 1 ) 2 + C = 0
,即
C = 0 C = 0 C = 0
。故
f ( x ) = 1 2 ( ln x ) 2 f(x) = \frac{1}{2} (\ln x)^2 f ( x ) = 2 1 ( ln x ) 2
。
3 设
L L L
为正向圆周
x 2 + y 2 = 2 x^2 + y^2 = 2 x 2 + y 2 = 2
在第一象限中的部分,则曲线积分
∫ L x d y − 2 y d x \int_L x\dy - 2y\dx ∫ L x d y − 2 y d x
的值为 ______.
【答案】
3 π 2 \dfrac{3\pi}{2} 2 3 π
【解析】
曲线
L L L
是圆
x 2 + y 2 = 2 x^2 + y^2 = 2 x 2 + y 2 = 2
在第一象限的部分,正向为逆时针方向。采用参数方程:令
x = 2 cos t x = \sqrt{2} \cos t x = 2 cos t
,
y = 2 sin t y = \sqrt{2} \sin t y = 2 sin t
,其中
t t t
从
0 0 0
到
π 2 \frac{\pi}{2} 2 π
。 计算微分:d x = − 2 sin t d t dx = -\sqrt{2} \sin t\, dt d x = − 2 sin t d t
,d y = 2 cos t d t dy = \sqrt{2} \cos t\, dt d y = 2 cos t d t
。 代入曲线积分:
∫ L x d y − 2 y d x = ∫ 0 π 2 [ ( 2 cos t ) ( 2 cos t d t ) − 2 ( 2 sin t ) ( − 2 sin t d t ) ] = ∫ 0 π 2 [ 2 cos 2 t + 4 sin 2 t ] d t . \int_L x\,dy - 2y\,dx = \int_{0}^{\frac{\pi}{2}} \left[ (\sqrt{2} \cos t)(\sqrt{2} \cos t\, dt) - 2(\sqrt{2} \sin t)(-\sqrt{2} \sin t\, dt) \right] = \int_{0}^{\frac{\pi}{2}} \left[ 2\cos^2 t + 4\sin^2 t \right] dt. ∫ L x d y − 2 y d x = ∫ 0 2 π [ ( 2 cos t ) ( 2 cos t d t ) − 2 ( 2 sin t ) ( − 2 sin t d t ) ] = ∫ 0 2 π [ 2 cos 2 t + 4 sin 2 t ] d t . 简化被积函数:
2 cos 2 t + 4 sin 2 t = 2 ( cos 2 t + 2 sin 2 t ) = 2 ( 1 + sin 2 t ) . 2\cos^2 t + 4\sin^2 t = 2(\cos^2 t + 2\sin^2 t) = 2(1 + \sin^2 t). 2 cos 2 t + 4 sin 2 t = 2 ( cos 2 t + 2 sin 2 t ) = 2 ( 1 + sin 2 t ) . 因此,
∫ 0 π 2 2 ( 1 + sin 2 t ) d t = 2 ∫ 0 π 2 ( 1 + sin 2 t ) d t . \int_{0}^{\frac{\pi}{2}} 2(1 + \sin^2 t)\, dt = 2 \int_{0}^{\frac{\pi}{2}} (1 + \sin^2 t)\, dt. ∫ 0 2 π 2 ( 1 + sin 2 t ) d t = 2 ∫ 0 2 π ( 1 + sin 2 t ) d t . 计算积分:
∫ 0 π 2 1 d t = π 2 , ∫ 0 π 2 sin 2 t d t = ∫ 0 π 2 1 − cos 2 t 2 d t = 1 2 [ t − sin 2 t 2 ] 0 π 2 = π 4 . \int_{0}^{\frac{\pi}{2}} 1\, dt = \frac{\pi}{2}, \quad \int_{0}^{\frac{\pi}{2}} \sin^2 t\, dt = \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt = \frac{1}{2} \left[ t - \frac{\sin 2t}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}. ∫ 0 2 π 1 d t = 2 π , ∫ 0 2 π sin 2 t d t = ∫ 0 2 π 2 1 − cos 2 t d t = 2 1 [ t − 2 sin 2 t ] 0 2 π = 4 π . 所以,
∫ 0 π 2 ( 1 + sin 2 t ) d t = π 2 + π 4 = 3 π 4 . \int_{0}^{\frac{\pi}{2}} (1 + \sin^2 t)\, dt = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}. ∫ 0 2 π ( 1 + sin 2 t ) d t = 2 π + 4 π = 4 3 π . 最终,
2 × 3 π 4 = 3 π 2 . 2 \times \frac{3\pi}{4} = \frac{3\pi}{2}. 2 × 4 3 π = 2 3 π . 因此,曲线积分的值为
3 π 2 \dfrac{3\pi}{2} 2 3 π
。
4 欧拉方程
x 2 d 2 y d x 2 + 4 x d y d x + 2 y = 0 x^2\frac{\d^2y}{\dx^2} + 4x\frac{\dy}{\dx} + 2y = 0 x 2 d x 2 d 2 y + 4 x d x d y + 2 y = 0
(
x > 0 x > 0 x > 0
)的通解为 ______.
【答案】 y = C 1 x + C 2 x 2 y = \frac{C_1}{x} + \frac{C_2}{x^2} y = x C 1 + x 2 C 2
【解析】 给定欧拉方程
x 2 d 2 y d x 2 + 4 x d y d x + 2 y = 0 ( x > 0 ) ,
x^2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + 4x \frac{\mathrm{d} y}{\mathrm{d} x} + 2y = 0 \quad (x > 0),
x 2 d x 2 d 2 y + 4 x d x d y + 2 y = 0 ( x > 0 ) , 通过代换
x = e t x = e^t x = e t
(即
t = ln x t = \ln x t = ln x
)将其转化为常系数线性微分方程。
计算导数
d y d x = d y d t ⋅ d t d x = d y d t ⋅ 1 x ,
\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{\mathrm{d} t}{\mathrm{d} x} = \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x},
d x d y = d t d y ⋅ d x d t = d t d y ⋅ x 1 , d 2 y d x 2 = d d x ( d y d x ) = d d x ( d y d t ⋅ 1 x ) = d 2 y d t 2 ⋅ 1 x 2 − d y d t ⋅ 1 x 2 = 1 x 2 ( d 2 y d t 2 − d y d t ) .
\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}
= \frac{\mathrm{d}}{\mathrm{d} x} \left( \frac{\mathrm{d} y}{\mathrm{d} x} \right)
= \frac{\mathrm{d}}{\mathrm{d} x} \left( \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x} \right)
= \frac{\mathrm{d}^2 y}{\mathrm{d} t^2} \cdot \frac{1}{x^2} - \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{1}{x^2}
= \frac{1}{x^2} \left( \frac{\mathrm{d}^2 y}{\mathrm{d} t^2} - \frac{\mathrm{d} y}{\mathrm{d} t} \right).
d x 2 d 2 y = d x d ( d x d y ) = d x d ( d t d y ⋅ x 1 ) = d t 2 d 2 y ⋅ x 2 1 − d t d y ⋅ x 2 1 = x 2 1 ( d t 2 d 2 y − d t d y ) . 代入原方程
x 2 ⋅ 1 x 2 ( d 2 y d t 2 − d y d t ) + 4 x ⋅ 1 x d y d t + 2 y = 0 ,
x^2 \cdot \frac{1}{x^2} \left( \frac{\mathrm{d}^2 y}{\mathrm{d} t^2} - \frac{\mathrm{d} y}{\mathrm{d} t} \right) + 4x \cdot \frac{1}{x} \frac{\mathrm{d} y}{\mathrm{d} t} + 2y = 0,
x 2 ⋅ x 2 1 ( d t 2 d 2 y − d t d y ) + 4 x ⋅ x 1 d t d y + 2 y = 0 , 化简得:
d 2 y d t 2 + 3 d y d t + 2 y = 0.
\frac{\mathrm{d}^2 y}{\mathrm{d} t^2} + 3 \frac{\mathrm{d} y}{\mathrm{d} t} + 2y = 0.
d t 2 d 2 y + 3 d t d y + 2 y = 0. 求解常系数方程
该方程的特征方程为
r 2 + 3 r + 2 = 0 ,
r^2 + 3r + 2 = 0,
r 2 + 3 r + 2 = 0 , 解得根
r = − 1 r = -1 r = − 1
和
r = − 2 r = -2 r = − 2
,因此通解为
y ( t ) = C 1 e − t + C 2 e − 2 t .
y(t) = C_1 e^{-t} + C_2 e^{-2t}.
y ( t ) = C 1 e − t + C 2 e − 2 t . 代回
t = ln x t = \ln x t = ln x
,得
e − t = x − 1 , e − 2 t = x − 2 ,
e^{-t} = x^{-1}, \quad e^{-2t} = x^{-2},
e − t = x − 1 , e − 2 t = x − 2 , 故原方程的通解为
y ( x ) = C 1 x − 1 + C 2 x − 2 = C 1 x + C 2 x 2 .
y(x) = C_1 x^{-1} + C_2 x^{-2} = \frac{C_1}{x} + \frac{C_2}{x^2}.
y ( x ) = C 1 x − 1 + C 2 x − 2 = x C 1 + x 2 C 2 . 5 设矩阵
A = ( 2 1 0 1 2 0 0 0 1 ) A = \begin{pmatrix}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix} A = 2 1 0 1 2 0 0 0 1
,矩阵
B B B
满足
A B A ∗ = 2 B A ∗ + E AB A^* = 2BA^* + E A B A ∗ = 2 B A ∗ + E
,其中
A ∗ A^* A ∗
为
A A A
的伴随矩阵,
E E E
是单位矩阵,则
∣ B ∣ = |B| = ∣ B ∣ =
______.
【答案】
1 9 \frac{1}{9} 9 1
【解析】
给定矩阵
A = ( 2 1 0 1 2 0 0 0 1 ) A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} A = 2 1 0 1 2 0 0 0 1
,满足方程
A B A ∗ = 2 B A ∗ + E AB A^* = 2BA^* + E A B A ∗ = 2 B A ∗ + E
,其中
A ∗ A^* A ∗
是
A A A
的伴随矩阵,
E E E
是单位矩阵。首先计算
A A A
的行列式:
∣ A ∣ = ∣ 2 1 0 1 2 0 0 0 1 ∣ = 1 ⋅ ∣ 2 1 1 2 ∣ = 1 ⋅ ( 4 − 1 ) = 3 |A| = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 1 \cdot (4 - 1) = 3 ∣ A ∣ = 2 1 0 1 2 0 0 0 1 = 1 ⋅ 2 1 1 2 = 1 ⋅ ( 4 − 1 ) = 3 由于
∣ A ∣ = 3 ≠ 0 |A| = 3 \neq 0 ∣ A ∣ = 3 = 0
,
A A A
可逆,且伴随矩阵满足
A ∗ = ∣ A ∣ A − 1 = 3 A − 1 A^* = |A| A^{-1} = 3 A^{-1} A ∗ = ∣ A ∣ A − 1 = 3 A − 1
。代入原方程:
A B ( 3 A − 1 ) = 2 B ( 3 A − 1 ) + E AB (3 A^{-1}) = 2B (3 A^{-1}) + E A B ( 3 A − 1 ) = 2 B ( 3 A − 1 ) + E 简化得:
3 A B A − 1 = 6 B A − 1 + E 3 AB A^{-1} = 6 B A^{-1} + E 3 A B A − 1 = 6 B A − 1 + E 右乘
A A A
:
3 A B A − 1 A = 6 B A − 1 A + E A 3 AB A^{-1} A = 6 B A^{-1} A + E A 3 A B A − 1 A = 6 B A − 1 A + E A 即:
3 A B = 6 B + A 3 A B = 6 B + A 3 A B = 6 B + A 整理得:
3 A B − 6 B = A 3 A B - 6 B = A 3 A B − 6 B = A 即:
( 3 A − 6 E ) B = A (3 A - 6 E) B = A ( 3 A − 6 E ) B = A 计算矩阵
C = 3 A − 6 E C = 3 A - 6 E C = 3 A − 6 E
:
3 A = ( 6 3 0 3 6 0 0 0 3 ) , 6 E = ( 6 0 0 0 6 0 0 0 6 ) 3 A = \begin{pmatrix} 6 & 3 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 3 \end{pmatrix}, \quad 6 E = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} 3 A = 6 3 0 3 6 0 0 0 3 , 6 E = 6 0 0 0 6 0 0 0 6
C = 3 A − 6 E = ( 0 3 0 3 0 0 0 0 − 3 ) C = 3 A - 6 E = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix} C = 3 A − 6 E = 0 3 0 3 0 0 0 0 − 3 计算
∣ C ∣ |C| ∣ C ∣
:
∣ C ∣ = ∣ 0 3 0 3 0 0 0 0 − 3 ∣ = ( − 3 ) ⋅ ∣ 0 3 3 0 ∣ = ( − 3 ) ⋅ ( 0 ⋅ 0 − 3 ⋅ 3 ) = ( − 3 ) ⋅ ( − 9 ) = 27 |C| = \begin{vmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -3 \end{vmatrix} = (-3) \cdot \begin{vmatrix} 0 & 3 \\ 3 & 0 \end{vmatrix} = (-3) \cdot (0 \cdot 0 - 3 \cdot 3) = (-3) \cdot (-9) = 27 ∣ C ∣ = 0 3 0 3 0 0 0 0 − 3 = ( − 3 ) ⋅ 0 3 3 0 = ( − 3 ) ⋅ ( 0 ⋅ 0 − 3 ⋅ 3 ) = ( − 3 ) ⋅ ( − 9 ) = 27 由
( 3 A − 6 E ) B = A (3 A - 6 E) B = A ( 3 A − 6 E ) B = A
,取行列式:
∣ 3 A − 6 E ∣ ⋅ ∣ B ∣ = ∣ A ∣ |3 A - 6 E| \cdot |B| = |A| ∣3 A − 6 E ∣ ⋅ ∣ B ∣ = ∣ A ∣ 即:
27 ⋅ ∣ B ∣ = 3 27 \cdot |B| = 3 27 ⋅ ∣ B ∣ = 3 所以:
∣ B ∣ = 3 27 = 1 9 |B| = \frac{3}{27} = \frac{1}{9} ∣ B ∣ = 27 3 = 9 1 因此,
∣ B ∣ = 1 9 |B| = \frac{1}{9} ∣ B ∣ = 9 1
。
6 设随机变量
X X X
服从参数为
λ \lambda λ
的指数分布,则
P { X > D X } = P\{X > \sqrt{DX}\} = P { X > D X } =
______.
【答案】 e − 1 e^{-1} e − 1
【解析】 随机变量
X X X
服从参数为
λ \lambda λ
的指数分布,其方差
D ( X ) = 1 λ 2 D(X) = \frac{1}{\lambda^2} D ( X ) = λ 2 1
,因此
D ( X ) = 1 λ \sqrt{D(X)} = \frac{1}{\lambda} D ( X ) = λ 1
。 需要计算概率
P { X > D ( X ) } = P { X > 1 λ } P\{X > \sqrt{D(X)}\} = P\{X > \frac{1}{\lambda}\} P { X > D ( X ) } = P { X > λ 1 }
。 指数分布的累积分布函数为
F ( x ) = 1 − e − λ x F(x) = 1 - e^{-\lambda x} F ( x ) = 1 − e − λ x
,故
P { X > x } = e − λ x P\{X > x\} = e^{-\lambda x} P { X > x } = e − λ x
。 代入
x = 1 λ x = \frac{1}{\lambda} x = λ 1
,得
P { X > 1 λ } = e − λ ⋅ 1 λ = e − 1 P\{X > \frac{1}{\lambda}\} = e^{-\lambda \cdot \frac{1}{\lambda}} = e^{-1} P { X > λ 1 } = e − λ ⋅ λ 1 = e − 1
。 因此,
P { X > D X } = e − 1 P\{X > \sqrt{DX}\} = e^{-1} P { X > D X } = e − 1
。
选择题 7~14小题,每小题4分,共32分
7 把
x → 0 + x \to 0^+ x → 0 +
时的无穷小量
α = ∫ 0 x cos t 2 d t \alpha = \int_0^x \cos t^2 \dt α = ∫ 0 x cos t 2 d t
,
β = ∫ 0 x 2 tan t d t \beta = \int_0^{x^2} \tan \sqrt{t} \dt β = ∫ 0 x 2 tan t d t
,
γ = ∫ 0 x sin t 3 d t \gamma = \int_0^{\sqrt{x}} \sin t^3 \dt γ = ∫ 0 x sin t 3 d t
排列起来,使排在后面的是前一个的高阶无穷小,
则正确的排列次序是
查看答案与解析
收藏
正确答案:B 【解析】 当
x → 0 + x \to 0^+ x → 0 +
时,分析三个无穷小量的阶数:
对于
α = ∫ 0 x cos t 2 d t \alpha = \int_0^x \cos t^2 \, dt α = ∫ 0 x cos t 2 d t
,由于
cos t 2 ≈ 1 \cos t^2 \approx 1 cos t 2 ≈ 1
当
t → 0 t \to 0 t → 0
,因此
α ∼ x \alpha \sim x α ∼ x
,即
α \alpha α
是
x x x
的一阶无穷小。 对于
β = ∫ 0 x 2 tan t d t \beta = \int_0^{x^2} \tan \sqrt{t} \, dt β = ∫ 0 x 2 tan t d t
,令
u = t u = \sqrt{t} u = t
,则
β = 2 ∫ 0 x u tan u d u \beta = 2 \int_0^x u \tan u \, du β = 2 ∫ 0 x u tan u d u
。当
u → 0 u \to 0 u → 0
时,
tan u ∼ u \tan u \sim u tan u ∼ u
,所以
u tan u ∼ u 2 u \tan u \sim u^2 u tan u ∼ u 2
,因此
β ∼ 2 ∫ 0 x u 2 d u = 2 3 x 3 \beta \sim 2 \int_0^x u^2 \, du = \frac{2}{3} x^3 β ∼ 2 ∫ 0 x u 2 d u = 3 2 x 3
,即
β \beta β
是
x x x
的三阶无穷小。 对于
γ = ∫ 0 x sin t 3 d t \gamma = \int_0^{\sqrt{x}} \sin t^3 \, dt γ = ∫ 0 x sin t 3 d t
,当
t → 0 t \to 0 t → 0
时,
sin t 3 ∼ t 3 \sin t^3 \sim t^3 sin t 3 ∼ t 3
,因此
γ ∼ ∫ 0 x t 3 d t = 1 4 x 2 \gamma \sim \int_0^{\sqrt{x}} t^3 \, dt = \frac{1}{4} x^2 γ ∼ ∫ 0 x t 3 d t = 4 1 x 2
,即
γ \gamma γ
是
x x x
的二阶无穷小。 比较阶数:
α \alpha α
为一阶,
γ \gamma γ
为二阶,
β \beta β
为三阶。要满足后一个是前一个的高阶无穷小,即阶数递增,排列次序应为
α \alpha α
、
γ \gamma γ
、
β \beta β
,对应选项 B。 8 设函数
f ( x ) f(x) f ( x )
连续,且
f ′ ( 0 ) > 0 f'(0) > 0 f ′ ( 0 ) > 0
,则存在
δ > 0 \delta > 0 δ > 0
,使得
查看答案与解析
收藏
正确答案:C 【解析】 由导数的定义,
f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x > 0
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} > 0
f ′ ( 0 ) = x → 0 lim x f ( x ) − f ( 0 ) > 0 根据极限的保号性,存在
δ > 0 \delta > 0 δ > 0
,使得当
0 < ∣ x ∣ < δ 0 < |x| < \delta 0 < ∣ x ∣ < δ
时,
f ( x ) − f ( 0 ) x > 0
\frac{f(x) - f(0)}{x} > 0
x f ( x ) − f ( 0 ) > 0 当
x ∈ ( 0 , δ ) x \in (0, \delta) x ∈ ( 0 , δ )
时,由于
x > 0 x > 0 x > 0
,可得
f ( x ) − f ( 0 ) > 0 ⇒ f ( x ) > f ( 0 )
f(x) - f(0) > 0 \quad \Rightarrow \quad f(x) > f(0)
f ( x ) − f ( 0 ) > 0 ⇒ f ( x ) > f ( 0 ) 因此选项 C 正确。
当
x ∈ ( − δ , 0 ) x \in (-\delta, 0) x ∈ ( − δ , 0 )
时,由于
x < 0 x < 0 x < 0
,可得
f ( x ) − f ( 0 ) < 0 ⇒ f ( x ) < f ( 0 )
f(x) - f(0) < 0 \quad \Rightarrow \quad f(x) < f(0)
f ( x ) − f ( 0 ) < 0 ⇒ f ( x ) < f ( 0 ) 因此选项 D 错误。
对于选项 A 和 B ,虽然
f ′ ( 0 ) > 0 f'(0) > 0 f ′ ( 0 ) > 0
,但不能保证在
( 0 , δ ) (0, \delta) ( 0 , δ )
或
( − δ , 0 ) (-\delta, 0) ( − δ , 0 )
内导数处处存在且恒正或恒负,因此 A 和 B 不一定成立。
9 设
∑ n = 1 ∞ a n \sum_{n = 1}^{\infty}a_n ∑ n = 1 ∞ a n
为正项级数,下列结论中正确的是
查看答案与解析
收藏
正确答案:B 【解析】
A :取反例
a n = 1 n ln n a_n = \frac{1}{n \ln n} a n = n l n n 1
(
n ≥ 2 n \geq 2 n ≥ 2
),则
lim n → ∞ n a n = lim n → ∞ 1 ln n = 0 ,
\lim_{n \to \infty} n a_n = \lim_{n \to \infty} \frac{1}{\ln n} = 0,
n → ∞ lim n a n = n → ∞ lim ln n 1 = 0 , 但级数
∑ n = 2 ∞ 1 n ln n \sum_{n=2}^{\infty} \frac{1}{n \ln n} ∑ n = 2 ∞ n l n n 1
发散(由积分判别法可知)。 因此 A 错误。
B :若
lim n → ∞ n a n = λ ≠ 0 \lim_{n \to \infty} n a_n = \lambda \neq 0 lim n → ∞ n a n = λ = 0
,则当
n n n
足够大时,
a n ∼ λ n a_n \sim \frac{\lambda}{n} a n ∼ n λ
。 由于
∑ 1 n \sum \frac{1}{n} ∑ n 1
发散,由极限比较法可知
∑ a n \sum a_n ∑ a n
发散。 因此 B 正确。
C :取反例
a n = 1 n 2 a_n = \frac{1}{n^2} a n = n 2 1
,则级数
∑ 1 n 2 \sum \frac{1}{n^2} ∑ n 2 1
收敛,但
lim n → ∞ n 2 a n = 1 ≠ 0.
\lim_{n \to \infty} n^2 a_n = 1 \neq 0.
n → ∞ lim n 2 a n = 1 = 0. 因此 C 错误。
D :取反例
a n = 1 n ln n a_n = \frac{1}{n \ln n} a n = n l n n 1
(
n ≥ 2 n \geq 2 n ≥ 2
),则级数
∑ n = 2 ∞ 1 n ln n \sum_{n=2}^{\infty} \frac{1}{n \ln n} ∑ n = 2 ∞ n l n n 1
发散,但
lim n → ∞ n a n = lim n → ∞ 1 ln n = 0 ,
\lim_{n \to \infty} n a_n = \lim_{n \to \infty} \frac{1}{\ln n} = 0,
n → ∞ lim n a n = n → ∞ lim ln n 1 = 0 , 不存在非零常数
λ \lambda λ
。 因此 D 错误。
10 设
f ( x ) f(x) f ( x )
为连续函数,
F ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x F(t) = \int_1^t \dy\int_y^t f(x)\dx F ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x
,则
F ′ ( 2 ) F'(2) F ′ ( 2 )
等于
查看答案与解析
收藏
正确答案:B 【解析】 已知连续函数
f ( x ) f(x) f ( x )
,以及
F ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x .
F(t) = \int_1^t \mathrm{d}y \int_y^t f(x) \, \mathrm{d}x.
F ( t ) = ∫ 1 t d y ∫ y t f ( x ) d x . 首先交换积分次序。 积分区域为
1 ≤ y ≤ t , y ≤ x ≤ t ,
1 \leq y \leq t, \quad y \leq x \leq t,
1 ≤ y ≤ t , y ≤ x ≤ t , 等价于
1 ≤ x ≤ t , 1 ≤ y ≤ x .
1 \leq x \leq t, \quad 1 \leq y \leq x.
1 ≤ x ≤ t , 1 ≤ y ≤ x . 因此,
F ( t ) = ∫ 1 t [ ∫ 1 x f ( x ) d y ] d x = ∫ 1 t f ( x ) ( x − 1 ) d x .
F(t) = \int_1^t \left[ \int_1^x f(x) \, \mathrm{d}y \right] \mathrm{d}x
= \int_1^t f(x)(x - 1) \, \mathrm{d}x.
F ( t ) = ∫ 1 t [ ∫ 1 x f ( x ) d y ] d x = ∫ 1 t f ( x ) ( x − 1 ) d x . 由微积分基本定理,
F ′ ( t ) = f ( t ) ( t − 1 ) .
F'(t) = f(t)(t - 1).
F ′ ( t ) = f ( t ) ( t − 1 ) . 代入
t = 2 t = 2 t = 2
得
F ′ ( 2 ) = f ( 2 ) ( 2 − 1 ) = f ( 2 ) .
F'(2) = f(2)(2 - 1) = f(2).
F ′ ( 2 ) = f ( 2 ) ( 2 − 1 ) = f ( 2 ) . 故正确答案为 B 。
11 设
A A A
是
3 3 3
阶方阵,将
A A A
的第
1 1 1
列与第
2 2 2
列交换得
B B B
,再把
B B B
的第
2 2 2
列加到第
3 3 3
列得
C C C
,
则满足
A Q = C AQ = C A Q = C
的可逆矩阵
Q Q Q
为
查看答案与解析
收藏
正确答案:D 【解析】 设矩阵
A A A
的列向量依次为
a 1 , a 2 , a 3 \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 a 1 , a 2 , a 3
。交换
A A A
的第 1 列与第 2 列得到矩阵
B B B
,于是
B B B
的列向量为
a 2 , a 1 , a 3 \mathbf{a}_2, \mathbf{a}_1, \mathbf{a}_3 a 2 , a 1 , a 3
。 再将
B B B
的第 2 列加到第 3 列得到矩阵
C C C
,则
C C C
的列向量为
a 2 , a 1 , a 1 + a 3 \mathbf{a}_2, \mathbf{a}_1, \mathbf{a}_1 + \mathbf{a}_3 a 2 , a 1 , a 1 + a 3
。
我们需要找到一个可逆矩阵
Q Q Q
,使得
A Q = C AQ = C A Q = C
。矩阵
Q Q Q
的每一列表示
A A A
的列向量的线性组合系数,因此
Q Q Q
应满足:
第一列对应
C C C
的第一列
a 2 \mathbf{a}_2 a 2
,即系数为
( 0 , 1 , 0 ) T (0,1,0)^\text{T} ( 0 , 1 , 0 ) T
; 第二列对应
C C C
的第二列
a 1 \mathbf{a}_1 a 1
,即系数为
( 1 , 0 , 0 ) T (1,0,0)^\text{T} ( 1 , 0 , 0 ) T
; 第三列对应
C C C
的第三列
a 1 + a 3 \mathbf{a}_1 + \mathbf{a}_3 a 1 + a 3
,即系数为
( 1 , 0 , 1 ) T (1,0,1)^\text{T} ( 1 , 0 , 1 ) T
。 因此
Q = ( 0 1 1 1 0 0 0 0 1 ) ,
Q = \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix},
Q = 0 1 0 1 0 0 1 0 1 , 对应选项 D。
验证 :计算
A Q AQ A Q
:
第一列为
A ⋅ ( 0 , 1 , 0 ) T = a 2 A \cdot (0,1,0)^\text{T} = \mathbf{a}_2 A ⋅ ( 0 , 1 , 0 ) T = a 2
; 第二列为
A ⋅ ( 1 , 0 , 0 ) T = a 1 A \cdot (1,0,0)^\text{T} = \mathbf{a}_1 A ⋅ ( 1 , 0 , 0 ) T = a 1
; 第三列为
A ⋅ ( 1 , 0 , 1 ) T = a 1 + a 3 A \cdot (1,0,1)^\text{T} = \mathbf{a}_1 + \mathbf{a}_3 A ⋅ ( 1 , 0 , 1 ) T = a 1 + a 3
。 与矩阵
C C C
一致。 其他选项错误原因 :
选项 A 的第三列给出
a 2 + a 3 \mathbf{a}_2 + \mathbf{a}_3 a 2 + a 3
; 选项 B 的第三列给出
a 2 + a 3 \mathbf{a}_2 + \mathbf{a}_3 a 2 + a 3
; 选项 C 的第二列给出
a 1 + a 3 \mathbf{a}_1 + \mathbf{a}_3 a 1 + a 3
。 均与
C C C
的列向量不符。 12 设
A A A
,
B B B
为满足
A B = O AB = O A B = O
的任意两个非零矩阵,则必有
查看答案与解析
收藏
正确答案:A 方法1:
设
A A A
为
m × n m \times n m × n
矩阵,
B B B
为
n × s n \times s n × s
矩阵,由
A B = 0 AB = 0 A B = 0
知,
r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r ( A ) + r ( B ) ≤ n
,其中
n n n
是矩阵
A A A
的列数,也是
B B B
的行数。
因
A A A
为非零矩阵,故
r ( A ) ≥ 1 r(A) \geq 1 r ( A ) ≥ 1
,因
r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r ( A ) + r ( B ) ≤ n
,从而
r ( B ) ≤ n − 1 < n r(B) \leq n - 1 < n r ( B ) ≤ n − 1 < n
,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知
B B B
的行向量组线性相关。
因
B B B
为非零矩阵,故
r ( B ) ≥ 1 r(B) \geq 1 r ( B ) ≥ 1
,因
r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r ( A ) + r ( B ) ≤ n
,从而
r ( A ) ≤ n − 1 < n r(A) \leq n - 1 < n r ( A ) ≤ n − 1 < n
,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知
A A A
的列向量组线性相关。
第170页 共316页
方法2:
设
A A A
为
m × n m \times n m × n
矩阵,
B B B
为
n × s n \times s n × s
矩阵,将
B B B
按列分块,由
A B = 0 AB = 0 A B = 0
得,
A B = A ( β 1 , β 2 , ⋯ , β s ) = 0 , A β i = 0 , i = 1 , 2 , ⋯ , s . AB = A(\beta_1, \beta_2, \cdots, \beta_s) = 0, \quad A\beta_i = 0, \quad i = 1, 2, \cdots, s. A B = A ( β 1 , β 2 , ⋯ , β s ) = 0 , A β i = 0 , i = 1 , 2 , ⋯ , s . 因
B B B
是非零矩阵,故存在
β i ≠ 0 \beta_i \neq 0 β i = 0
,使得
A β i = 0 A\beta_i = 0 A β i = 0
。即齐次线性方程组
A x = 0 Ax = 0 A x = 0
有非零解,故
r ( A ) < n r(A) < n r ( A ) < n
,从而
A A A
的列向量组线性相关。又
( A B ) T = B T A T = 0 (AB)^T = B^TA^T = 0 ( A B ) T = B T A T = 0
,将
A T A^T A T
按列分块,得
B T A T = B T ( α 1 T , α 2 T , ⋯ , α m T ) = 0 , B T α i T = 0 , i = 1 , 2 , ⋯ , m . B^TA^T = B^T(\alpha_1^T, \alpha_2^T, \cdots, \alpha_m^T) = 0, \quad B^T\alpha_i^T = 0, \quad i = 1, 2, \cdots, m. B T A T = B T ( α 1 T , α 2 T , ⋯ , α m T ) = 0 , B T α i T = 0 , i = 1 , 2 , ⋯ , m . 因
A A A
是非零矩阵,故存在
α i T ≠ 0 \alpha_i^T \neq 0 α i T = 0
,使得
B T α i T = 0 B^T\alpha_i^T = 0 B T α i T = 0
,即齐次线性方程组
B T x = 0 B^Tx = 0 B T x = 0
有非零解,故
r ( B T ) < n r(B^T) < n r ( B T ) < n
,从而
B T B^T B T
的列向量组线性相关,即
B B B
的行向量组线性相关。
13 设随机变量
X X X
服从正态分布
N ( 0 , 1 ) N(0,1) N ( 0 , 1 )
,对给定的
α \alpha α
(
0 < α < 1 0 < \alpha < 1 0 < α < 1
),
数
u α u_{\alpha} u α
满足
P { X > u α } = α P\{X > u_{\alpha}\} = \alpha P { X > u α } = α
,若
P { ∣ X ∣ < x } = α P\{|X| < x\} = \alpha P { ∣ X ∣ < x } = α
,则
x x x
等于
查看答案与解析
收藏
正确答案:C 【解析】 给定
P { ∣ X ∣ < x } = α P\{|X| < x\} = \alpha P { ∣ X ∣ < x } = α
,由于
X ∼ N ( 0 , 1 ) X \sim N(0,1) X ∼ N ( 0 , 1 )
,有
P { ∣ X ∣ < x } = P { − x < X < x } = Φ ( x ) − Φ ( − x ) = 2 Φ ( x ) − 1 P\{|X| < x\} = P\{-x < X < x\} = \Phi(x) - \Phi(-x) = 2\Phi(x) - 1 P { ∣ X ∣ < x } = P { − x < X < x } = Φ ( x ) − Φ ( − x ) = 2Φ ( x ) − 1
,其中
Φ \Phi Φ
为标准正态累积分布函数。因此,
2 Φ ( x ) − 1 = α 2\Phi(x) - 1 = \alpha 2Φ ( x ) − 1 = α
,解得
Φ ( x ) = 1 + α 2 \Phi(x) = \frac{1 + \alpha}{2} Φ ( x ) = 2 1 + α
。
由
u α u_{\alpha} u α
的定义,
P { X > u α } = α P\{X > u_{\alpha}\} = \alpha P { X > u α } = α
,即
Φ ( u α ) = 1 − α \Phi(u_{\alpha}) = 1 - \alpha Φ ( u α ) = 1 − α
,所以
u α = Φ − 1 ( 1 − α ) u_{\alpha} = \Phi^{-1}(1 - \alpha) u α = Φ − 1 ( 1 − α )
。
令
x = u β x = u_{\beta} x = u β
,则
Φ ( x ) = 1 − β \Phi(x) = 1 - \beta Φ ( x ) = 1 − β
,结合
Φ ( x ) = 1 + α 2 \Phi(x) = \frac{1 + \alpha}{2} Φ ( x ) = 2 1 + α
,有
1 − β = 1 + α 2 1 - \beta = \frac{1 + \alpha}{2} 1 − β = 2 1 + α
,解得
β = 1 − α 2 \beta = \frac{1 - \alpha}{2} β = 2 1 − α
。因此,
x = u 1 − α 2 x = u_{\frac{1 - \alpha}{2}} x = u 2 1 − α
,对应选项 C。
14 设随机变量
X 1 , X 2 , ⋯ , X n X_1,X_2, \cdots ,X_n X 1 , X 2 , ⋯ , X n
(
n > 1 n > 1 n > 1
)独立同分布,且其方差为
σ 2 > 0 \sigma^2 > 0 σ 2 > 0
.
令
Y = 1 n ∑ i = 1 n X i Y = \frac{1}{n}\sum_{i = 1}^n X_i Y = n 1 ∑ i = 1 n X i
,则
查看答案与解析
收藏
正确答案:A 【解析】
由于随机变量
X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X 1 , X 2 , ⋯ , X n
(
n > 1 n > 1 n > 1
) 独立同分布,所以有
Cov ( X i , X j ) = { σ 2 , i = j ; 0 , i ≠ j . \text{Cov}(X_i, X_j) =
\begin{cases}
\sigma^2, & i = j; \\
0, & i \neq j.
\end{cases} Cov ( X i , X j ) = { σ 2 , 0 , i = j ; i = j . 从而有
Cov ( X 1 , Y ) = Cov ( X 1 , 1 n ∑ i = 1 n X i ) = 1 n Cov ( X 1 , X 1 ) + 1 n ∑ i = 2 n Cov ( X 1 , X i ) = 1 n D X 1 = 1 n σ 2 . \text{Cov}(X_1, Y) = \text{Cov}(X_1, \frac{1}{n} \sum_{i=1}^n X_i) = \frac{1}{n} \text{Cov}(X_1, X_1) + \frac{1}{n} \sum_{i=2}^n \text{Cov}(X_1, X_i) = \frac{1}{n} DX_1 = \frac{1}{n} \sigma^2. Cov ( X 1 , Y ) = Cov ( X 1 , n 1 i = 1 ∑ n X i ) = n 1 Cov ( X 1 , X 1 ) + n 1 i = 2 ∑ n Cov ( X 1 , X i ) = n 1 D X 1 = n 1 σ 2 . 因为
X X X
与
Y Y Y
独立时,有
D ( X ± Y ) = D ( X ) + D ( Y ) D(X \pm Y) = D(X) + D(Y) D ( X ± Y ) = D ( X ) + D ( Y )
,所以
D ( X 1 + Y ) = D ( 1 + n n X 1 + 1 n X 2 + ⋯ + 1 n X n ) = ( 1 + n ) 2 n 2 σ 2 + n − 1 n 2 σ 2 = n + 3 n σ 2 , D(X_1 + Y) = D\left( \frac{1+n}{n} X_1 + \frac{1}{n} X_2 + \cdots + \frac{1}{n} X_n \right) = \frac{(1+n)^2}{n^2} \sigma^2 + \frac{n-1}{n^2} \sigma^2 = \frac{n+3}{n} \sigma^2, D ( X 1 + Y ) = D ( n 1 + n X 1 + n 1 X 2 + ⋯ + n 1 X n ) = n 2 ( 1 + n ) 2 σ 2 + n 2 n − 1 σ 2 = n n + 3 σ 2 ,
D ( X 1 − Y ) = D ( n − 1 n X 1 − 1 n X 2 − ⋯ − 1 n X n ) = ( n − 1 ) 2 n 2 σ 2 + n − 1 n 2 σ 2 = n − 2 n σ 2 . D(X_1 - Y) = D\left( \frac{n-1}{n} X_1 - \frac{1}{n} X_2 - \cdots - \frac{1}{n} X_n \right) = \frac{(n-1)^2}{n^2} \sigma^2 + \frac{n-1}{n^2} \sigma^2 = \frac{n-2}{n} \sigma^2. D ( X 1 − Y ) = D ( n n − 1 X 1 − n 1 X 2 − ⋯ − n 1 X n ) = n 2 ( n − 1 ) 2 σ 2 + n 2 n − 1 σ 2 = n n − 2 σ 2 . 解答题 15~23小题,共94分
15 (本题满分 12 分)
设
e < a < b < e 2 \e < a < b < \e^2 e < a < b < e 2
,证明
ln 2 b − ln 2 a > 4 e 2 ( b − a ) \ln^2 b - \ln^2 a > \frac{4}{\e^2}(b - a) ln 2 b − ln 2 a > e 2 4 ( b − a )
.
【答案】
不等式成立。
【解析】
令$f(x)=(\ln x)^2$,则$f’(x)=\frac{2\ln x}{x}$。由拉格朗日中值定理,存在$c\in(a,b)$使得
ln 2 b − ln 2 a = f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) = 2 ln c c ( b − a ) . \ln^2 b - \ln^2 a = f(b)-f(a) = f'(c)(b-a) = \frac{2\ln c}{c}(b-a). ln 2 b − ln 2 a = f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) = c 2 ln c ( b − a ) . 由于$e < a < c < b < e^2$,故$c\in(e,e^2)$。考虑函数$g(x)=\frac{\ln x}{x}$,则$g’(x)=\frac{1-\ln x}{x^2}$。当$x>e$时,$g’(x)<0$,所以$g(x)$在$(e,+\infty)$上严格递减。因此当$c\in(e,e^2)$时,有
ln c c > ln e 2 e 2 = 2 e 2 . \frac{\ln c}{c} > \frac{\ln e^2}{e^2} = \frac{2}{e^2}. c ln c > e 2 ln e 2 = e 2 2 . 于是
ln 2 b − ln 2 a = 2 ln c c ( b − a ) > 4 e 2 ( b − a ) . \ln^2 b - \ln^2 a = \frac{2\ln c}{c}(b-a) > \frac{4}{e^2}(b-a). ln 2 b − ln 2 a = c 2 ln c ( b − a ) > e 2 4 ( b − a ) . 故原不等式得证。
16 (本题满分 11 分)
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,
使飞机迅速减速并停下.现有一质量为
9000 9000 9000
kg的飞机,着陆时的水平速度为
700 700 700
km/h.经测试,
减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为
k = 6.0 × 10 6 k = 6.0 \times 10^6 k = 6.0 × 1 0 6
).
问从着陆点算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时.)
【答案】 1.05 千米
【解析】
由题设,飞机质量
m = 9000 kg m = 9000 \, \text{kg} m = 9000 kg
,着陆时的水平速度
v 0 = 700 km/h v_0 = 700 \, \text{km/h} v 0 = 700 km/h
。从飞机接触跑道开始计时,设 t 时刻飞机的滑行距离为
x ( t ) x(t) x ( t )
,速度为
v ( t ) v(t) v ( t )
,则
v ( 0 ) = v 0 , x ( 0 ) = 0 v(0) = v_0, x(0) = 0 v ( 0 ) = v 0 , x ( 0 ) = 0
。根据牛顿第二定律有
m d v d t = − k v m \frac{dv}{dt} = -kv m d t d v = − k v
。又
d v d t = d v d x ⋅ d x d t = v d v d x \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = v \frac{dv}{dx} d t d v = d x d v ⋅ d t d x = v d x d v
,故由以上两式得
d x = − m k d v dx = -\frac{m}{k} dv d x = − k m d v
,积分得
x ( t ) = − m k v + C x(t) = -\frac{m}{k} v + C x ( t ) = − k m v + C
。由初始条件
v ( 0 ) = v 0 , x ( 0 ) = 0 v(0) = v_0, x(0) = 0 v ( 0 ) = v 0 , x ( 0 ) = 0
,解得
C = m k v 0 C = \frac{m}{k} v_0 C = k m v 0
,从而
x ( t ) = m k ( v 0 − v ( t ) ) x(t) = \frac{m}{k} (v_0 - v(t)) x ( t ) = k m ( v 0 − v ( t ))
。当
v ( t ) → 0 v(t) \to 0 v ( t ) → 0
时,
x ( t ) → m v 0 k = 9000 × 700 6.0 × 10 6 = 1.05.
x(t) \to \frac{mv_0}{k} = \frac{9000 \times 700}{6.0 \times 10^6} = 1.05.
x ( t ) → k m v 0 = 6.0 × 1 0 6 9000 × 700 = 1.05. 所以,飞机滑行的最长距离为 1.05 千米。
17 (本题满分 12 分)
计算曲面积分
I = ∬ Σ 2 x 3 d y d z + 2 y 3 d z d x + 3 ( z 2 − 1 ) d x d y , I = \iint_{\Sigma}2x^3 \dy\dz + 2y^3 \dz\dx + 3(z^2 - 1) \dx\dy, I = ∬ Σ 2 x 3 d y d z + 2 y 3 d z d x + 3 ( z 2 − 1 ) d x d y , 其中
Σ \Sigma Σ
是曲面
z = 1 − x 2 − y 2 ( z ≥ 0 ) z = 1 - x^2 - y^2(z \ge 0) z = 1 − x 2 − y 2 ( z ≥ 0 )
的上侧.
【答案】
− π -\pi − π
【解析】
考虑曲面
Σ \Sigma Σ
:
z = 1 − x 2 − y 2 z = 1 - x^2 - y^2 z = 1 − x 2 − y 2
(
z ≥ 0 z \ge 0 z ≥ 0
) 的上侧。为了应用散度定理,添加底面
S 1 S_1 S 1
:
z = 0 z = 0 z = 0
(
x 2 + y 2 ≤ 1 x^2 + y^2 \le 1 x 2 + y 2 ≤ 1
) 的下侧,构成封闭曲面
S = Σ ∪ S 1 S = \Sigma \cup S_1 S = Σ ∪ S 1
,所围区域为
Ω \Omega Ω
。令向量场
F = ( P , Q , R ) = ( 2 x 3 , 2 y 3 , 3 ( z 2 − 1 ) ) \mathbf{F} = (P, Q, R) = (2x^3, 2y^3, 3(z^2 - 1)) F = ( P , Q , R ) = ( 2 x 3 , 2 y 3 , 3 ( z 2 − 1 ))
,则原积分可写为:
I = ∬ Σ F ⋅ d S . I = \iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S}. I = ∬ Σ F ⋅ d S . 由散度定理:
∬ S F ⋅ d S = ∭ Ω ∇ ⋅ F d V . \iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\Omega} \nabla \cdot \mathbf{F} \, dV. ∬ S F ⋅ d S = ∭ Ω ∇ ⋅ F d V . 计算散度:
∇ ⋅ F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 6 x 2 + 6 y 2 + 6 z . \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 6x^2 + 6y^2 + 6z. ∇ ⋅ F = ∂ x ∂ P + ∂ y ∂ Q + ∂ z ∂ R = 6 x 2 + 6 y 2 + 6 z . 在柱坐标下:
x = r cos θ x = r\cos\theta x = r cos θ
,
y = r sin θ y = r\sin\theta y = r sin θ
,
z = z z = z z = z
,则
d V = r d r d θ d z dV = r \, dr \, d\theta \, dz d V = r d r d θ d z
,积分区域为
0 ≤ θ ≤ 2 π 0 \le \theta \le 2\pi 0 ≤ θ ≤ 2 π
,
0 ≤ r ≤ 1 0 \le r \le 1 0 ≤ r ≤ 1
,
0 ≤ z ≤ 1 − r 2 0 \le z \le 1 - r^2 0 ≤ z ≤ 1 − r 2
。于是:
∭ Ω ∇ ⋅ F d V = ∫ 0 2 π ∫ 0 1 ∫ 0 1 − r 2 ( 6 r 2 + 6 z ) r d z d r d θ . \iiint_{\Omega} \nabla \cdot \mathbf{F} \, dV = \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1-r^2} (6r^2 + 6z) r \, dz \, dr \, d\theta. ∭ Ω ∇ ⋅ F d V = ∫ 0 2 π ∫ 0 1 ∫ 0 1 − r 2 ( 6 r 2 + 6 z ) r d z d r d θ . 先对
z z z
积分:
∫ 0 1 − r 2 ( 6 r 3 + 6 r z ) d z = 6 r 3 ( 1 − r 2 ) + 3 r ( 1 − r 2 ) 2 . \int_{0}^{1-r^2} (6r^3 + 6r z) \, dz = 6r^3 (1 - r^2) + 3r (1 - r^2)^2. ∫ 0 1 − r 2 ( 6 r 3 + 6 rz ) d z = 6 r 3 ( 1 − r 2 ) + 3 r ( 1 − r 2 ) 2 . 然后对
r r r
积分:
∫ 0 1 6 r 3 ( 1 − r 2 ) d r = 6 [ r 4 4 − r 6 6 ] 0 1 = 6 ( 1 4 − 1 6 ) = 1 2 , \int_{0}^{1} 6r^3 (1 - r^2) \, dr = 6 \left[ \frac{r^4}{4} - \frac{r^6}{6} \right]_{0}^{1} = 6 \left( \frac{1}{4} - \frac{1}{6} \right) = \frac{1}{2}, ∫ 0 1 6 r 3 ( 1 − r 2 ) d r = 6 [ 4 r 4 − 6 r 6 ] 0 1 = 6 ( 4 1 − 6 1 ) = 2 1 ,
∫ 0 1 3 r ( 1 − r 2 ) 2 d r = 3 ∫ 0 1 ( r − 2 r 3 + r 5 ) d r = 3 [ r 2 2 − r 4 2 + r 6 6 ] 0 1 = 3 ( 1 2 − 1 2 + 1 6 ) = 1 2 . \int_{0}^{1} 3r (1 - r^2)^2 \, dr = 3 \int_{0}^{1} (r - 2r^3 + r^5) \, dr = 3 \left[ \frac{r^2}{2} - \frac{r^4}{2} + \frac{r^6}{6} \right]_{0}^{1} = 3 \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{6} \right) = \frac{1}{2}. ∫ 0 1 3 r ( 1 − r 2 ) 2 d r = 3 ∫ 0 1 ( r − 2 r 3 + r 5 ) d r = 3 [ 2 r 2 − 2 r 4 + 6 r 6 ] 0 1 = 3 ( 2 1 − 2 1 + 6 1 ) = 2 1 . 所以:
∫ 0 1 [ 6 r 3 ( 1 − r 2 ) + 3 r ( 1 − r 2 ) 2 ] d r = 1 2 + 1 2 = 1 , \int_{0}^{1} \left[ 6r^3 (1 - r^2) + 3r (1 - r^2)^2 \right] dr = \frac{1}{2} + \frac{1}{2} = 1, ∫ 0 1 [ 6 r 3 ( 1 − r 2 ) + 3 r ( 1 − r 2 ) 2 ] d r = 2 1 + 2 1 = 1 ,
∭ Ω ∇ ⋅ F d V = ∫ 0 2 π 1 d θ = 2 π . \iiint_{\Omega} \nabla \cdot \mathbf{F} \, dV = \int_{0}^{2\pi} 1 \, d\theta = 2\pi. ∭ Ω ∇ ⋅ F d V = ∫ 0 2 π 1 d θ = 2 π . 因此:
∬ S F ⋅ d S = 2 π . \iint_{S} \mathbf{F} \cdot d\mathbf{S} = 2\pi. ∬ S F ⋅ d S = 2 π . 接下来计算底面积分
∬ S 1 F ⋅ d S \iint_{S_1} \mathbf{F} \cdot d\mathbf{S} ∬ S 1 F ⋅ d S
。在
S 1 S_1 S 1
上,
z = 0 z = 0 z = 0
,下侧,法向量为
n = ( 0 , 0 , − 1 ) \mathbf{n} = (0, 0, -1) n = ( 0 , 0 , − 1 )
。由于
S 1 S_1 S 1
是水平面,
d y d z dy \, dz d y d z
和
d z d x dz \, dx d z d x
的投影面积为零,只需计算
d x d y dx \, dy d x d y
部分。对于下侧,有
d x d y = − d A dx \, dy = -dA d x d y = − d A
,其中
d A = d x d y dA = dx \, dy d A = d x d y
是投影面积元。于是:
∬ S 1 F ⋅ d S = ∬ S 1 3 ( z 2 − 1 ) d x d y = ∬ x 2 + y 2 ≤ 1 3 ( 0 − 1 ) ( − 1 ) d x d y = ∬ x 2 + y 2 ≤ 1 3 d x d y = 3 ⋅ π = 3 π . \iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_1} 3(z^2 - 1) \, dx \, dy = \iint_{x^2 + y^2 \le 1} 3(0 - 1) (-1) \, dx \, dy = \iint_{x^2 + y^2 \le 1} 3 \, dx \, dy = 3 \cdot \pi = 3\pi. ∬ S 1 F ⋅ d S = ∬ S 1 3 ( z 2 − 1 ) d x d y = ∬ x 2 + y 2 ≤ 1 3 ( 0 − 1 ) ( − 1 ) d x d y = ∬ x 2 + y 2 ≤ 1 3 d x d y = 3 ⋅ π = 3 π . 所以:
I = ∬ Σ F ⋅ d S = ∬ S F ⋅ d S − ∬ S 1 F ⋅ d S = 2 π − 3 π = − π . I = \iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot d\mathbf{S} - \iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = 2\pi - 3\pi = -\pi. I = ∬ Σ F ⋅ d S = ∬ S F ⋅ d S − ∬ S 1 F ⋅ d S = 2 π − 3 π = − π . 因此,曲面积分
I = − π I = -\pi I = − π
.
18 (本题满分 11 分)
设有方程
x n + n x − 1 = 0 x^n + nx - 1 = 0 x n + n x − 1 = 0
,其中
n n n
为正整数.证明此方程存在惟一正实根
x n x_n x n
,
并证明当
α > 1 \alpha > 1 α > 1
时,级数
∑ n = 1 ∞ x n α \sum_{n = 1}^{\infty}x_n^{\alpha} ∑ n = 1 ∞ x n α
收敛.
【答案】
方程
x n + n x − 1 = 0 x^n + nx - 1 = 0 x n + n x − 1 = 0
存在唯一正实根
x n ∈ ( 0 , 1 ) x_n \in (0,1) x n ∈ ( 0 , 1 )
,且当
α > 1 \alpha > 1 α > 1
时,级数
∑ n = 1 ∞ x n α \sum_{n=1}^{\infty} x_n^{\alpha} ∑ n = 1 ∞ x n α
收敛。
【解析】
考虑函数
f ( x ) = x n + n x − 1 f(x) = x^n + nx - 1 f ( x ) = x n + n x − 1
,其中
n n n
为正整数。 当
x = 0 x = 0 x = 0
时,
f ( 0 ) = − 1 < 0 f(0) = -1 < 0 f ( 0 ) = − 1 < 0
;当
x = 1 x = 1 x = 1
时,
f ( 1 ) = n > 0 f(1) = n > 0 f ( 1 ) = n > 0
。 由于
f ( x ) f(x) f ( x )
连续,由中间值定理,存在
x n ∈ ( 0 , 1 ) x_n \in (0,1) x n ∈ ( 0 , 1 )
使得
f ( x n ) = 0 f(x_n) = 0 f ( x n ) = 0
。 又
f ′ ( x ) = n x n − 1 + n > 0 f'(x) = n x^{n-1} + n > 0 f ′ ( x ) = n x n − 1 + n > 0
对于
x > 0 x > 0 x > 0
,故
f ( x ) f(x) f ( x )
在
x > 0 x > 0 x > 0
上严格递增,因此正实根
x n x_n x n
唯一。
由方程
x n n + n x n − 1 = 0 x_n^n + n x_n - 1 = 0 x n n + n x n − 1 = 0
可得
x n n + n x n = 1 x_n^n + n x_n = 1 x n n + n x n = 1
。 由于
x n n > 0 x_n^n > 0 x n n > 0
,有
n x n < 1 n x_n < 1 n x n < 1
,即
x n < 1 n x_n < \frac{1}{n} x n < n 1
。 当
α > 1 \alpha > 1 α > 1
时,有
x n α < ( 1 n ) α = 1 n α x_n^{\alpha} < \left( \frac{1}{n} \right)^{\alpha} = \frac{1}{n^{\alpha}} x n α < ( n 1 ) α = n α 1
。 而级数
∑ n = 1 ∞ 1 n α \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} ∑ n = 1 ∞ n α 1
收敛(
α > 1 \alpha > 1 α > 1
时的
p p p
-级数), 由比较判别法,级数
∑ n = 1 ∞ x n α \sum_{n=1}^{\infty} x_n^{\alpha} ∑ n = 1 ∞ x n α
收敛。
19 (本题满分 12 分)
设
z = z ( x , y ) z = z(x,y) z = z ( x , y )
是由
x 2 − 6 x y + 10 y 2 − 2 y z − z 2 + 18 = 0 x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0 x 2 − 6 x y + 10 y 2 − 2 yz − z 2 + 18 = 0
确定的函数,求
z = z ( x , y ) z = z(x,y) z = z ( x , y )
的极值点和极值.
【答案】 极小值点为
( 9 , 3 ) (9,3) ( 9 , 3 )
,极小值为
z = 3 z=3 z = 3
;极大值点为
( − 9 , − 3 ) (-9,-3) ( − 9 , − 3 )
,极大值为
z = − 3 z=-3 z = − 3
。
【解析】 设
F ( x , y , z ) = x 2 − 6 x y + 10 y 2 − 2 y z − z 2 + 18 F(x,y,z) = x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 F ( x , y , z ) = x 2 − 6 x y + 10 y 2 − 2 yz − z 2 + 18
。由隐函数存在定理,函数
z = z ( x , y ) z = z(x,y) z = z ( x , y )
的极值点需满足
F x = 0 F_x = 0 F x = 0
,
F y = 0 F_y = 0 F y = 0
,且
F ( x , y , z ) = 0 F(x,y,z) = 0 F ( x , y , z ) = 0
。 计算偏导数:
F x = 2 x − 6 y , F y = − 6 x + 20 y − 2 z . F_x = 2x - 6y, \quad F_y = -6x + 20y - 2z. F x = 2 x − 6 y , F y = − 6 x + 20 y − 2 z . 令
F x = 0 F_x = 0 F x = 0
,得
2 x − 6 y = 0 2x - 6y = 0 2 x − 6 y = 0
,即
x = 3 y x = 3y x = 3 y
。 令
F y = 0 F_y = 0 F y = 0
,代入
x = 3 y x = 3y x = 3 y
,得
− 6 ( 3 y ) + 20 y − 2 z = 0 -6(3y) + 20y - 2z = 0 − 6 ( 3 y ) + 20 y − 2 z = 0
,即
2 y − 2 z = 0 2y - 2z = 0 2 y − 2 z = 0
,故
z = y z = y z = y
。 代入
F ( x , y , z ) = 0 F(x,y,z) = 0 F ( x , y , z ) = 0
:
( 3 y ) 2 − 6 ( 3 y ) y + 10 y 2 − 2 y ⋅ y − y 2 + 18 = 0 , (3y)^2 - 6(3y)y + 10y^2 - 2y \cdot y - y^2 + 18 = 0, ( 3 y ) 2 − 6 ( 3 y ) y + 10 y 2 − 2 y ⋅ y − y 2 + 18 = 0 , 简化得
− 2 y 2 + 18 = 0 -2y^2 + 18 = 0 − 2 y 2 + 18 = 0
,解得
y = ± 3 y = \pm 3 y = ± 3
。 当
y = 3 y = 3 y = 3
时,
x = 9 x = 9 x = 9
,
z = 3 z = 3 z = 3
;当
y = − 3 y = -3 y = − 3
时,
x = − 9 x = -9 x = − 9
,
z = − 3 z = -3 z = − 3
。 因此,候选极值点为
( 9 , 3 , 3 ) (9,3,3) ( 9 , 3 , 3 )
和
( − 9 , − 3 , − 3 ) (-9,-3,-3) ( − 9 , − 3 , − 3 )
。
为判断极值类型,计算二阶偏导数。 首先,
F z = − 2 y − 2 z F_z = -2y - 2z F z = − 2 y − 2 z
。 在点
( 9 , 3 , 3 ) (9,3,3) ( 9 , 3 , 3 )
处,
F z = − 12 F_z = -12 F z = − 12
,
z x x = − F x x F z = − 2 − 12 = 1 6 , z x y = − F x y F z = − − 6 − 12 = − 1 2 , z y y = − F y y F z = − 20 − 12 = 5 3 . z_{xx} = -\frac{F_{xx}}{F_z} = -\frac{2}{-12} = \frac{1}{6}, \quad
z_{xy} = -\frac{F_{xy}}{F_z} = -\frac{-6}{-12} = -\frac{1}{2}, \quad
z_{yy} = -\frac{F_{yy}}{F_z} = -\frac{20}{-12} = \frac{5}{3}. z xx = − F z F xx = − − 12 2 = 6 1 , z x y = − F z F x y = − − 12 − 6 = − 2 1 , z yy = − F z F yy = − − 12 20 = 3 5 . Hessian 行列式:
D = z x x z y y − ( z x y ) 2 = 1 6 ⋅ 5 3 − ( − 1 2 ) 2 = 5 18 − 1 4 = 1 36 > 0 , D = z_{xx} z_{yy} - (z_{xy})^2 = \frac{1}{6} \cdot \frac{5}{3} - \left(-\frac{1}{2}\right)^2 = \frac{5}{18} - \frac{1}{4} = \frac{1}{36} > 0, D = z xx z yy − ( z x y ) 2 = 6 1 ⋅ 3 5 − ( − 2 1 ) 2 = 18 5 − 4 1 = 36 1 > 0 , 且
z x x = 1 6 > 0 z_{xx} = \frac{1}{6} > 0 z xx = 6 1 > 0
,故为极小值点,极小值
z = 3 z = 3 z = 3
。
在点
( − 9 , − 3 , − 3 ) (-9,-3,-3) ( − 9 , − 3 , − 3 )
处,
F z = 12 F_z = 12 F z = 12
,
z x x = − F x x F z = − 2 12 = − 1 6 , z x y = − F x y F z = − − 6 12 = 1 2 , z y y = − F y y F z = − 20 12 = − 5 3 . z_{xx} = -\frac{F_{xx}}{F_z} = -\frac{2}{12} = -\frac{1}{6}, \quad
z_{xy} = -\frac{F_{xy}}{F_z} = -\frac{-6}{12} = \frac{1}{2}, \quad
z_{yy} = -\frac{F_{yy}}{F_z} = -\frac{20}{12} = -\frac{5}{3}. z xx = − F z F xx = − 12 2 = − 6 1 , z x y = − F z F x y = − 12 − 6 = 2 1 , z yy = − F z F yy = − 12 20 = − 3 5 . Hessian 行列式:
D = z x x z y y − ( z x y ) 2 = ( − 1 6 ) ( − 5 3 ) − ( 1 2 ) 2 = 5 18 − 1 4 = 1 36 > 0 , D = z_{xx} z_{yy} - (z_{xy})^2 = \left(-\frac{1}{6}\right) \left(-\frac{5}{3}\right) - \left(\frac{1}{2}\right)^2 = \frac{5}{18} - \frac{1}{4} = \frac{1}{36} > 0, D = z xx z yy − ( z x y ) 2 = ( − 6 1 ) ( − 3 5 ) − ( 2 1 ) 2 = 18 5 − 4 1 = 36 1 > 0 , 且
z x x = − 1 6 < 0 z_{xx} = -\frac{1}{6} < 0 z xx = − 6 1 < 0
,故为极大值点,极大值
z = − 3 z = -3 z = − 3
。
因此,函数
z = z ( x , y ) z = z(x,y) z = z ( x , y )
的极小值点为
( 9 , 3 ) (9,3) ( 9 , 3 )
,极小值为
3 3 3
;极大值点为
( − 9 , − 3 ) (-9,-3) ( − 9 , − 3 )
,极大值为
− 3 -3 − 3
。
20 (本题满分 9 分)
设有齐次线性方程组
{ ( 1 + a ) x 1 + x 2 + ⋯ + x n = 0 , 2 x 1 + ( 2 + a ) x 2 + ⋯ + 2 x n = 0 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ n x 1 + n x 2 + ⋯ + ( n + a ) x n = 0 , ( n ≥ 2 ) . \begin{cases}
(1 + a) x_1 + x_2 + \cdots + x_n = 0, \\
2x_1 + (2 + a) x_2 + \cdots + 2x_n = 0, \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
nx_1 + nx_2 + \cdots + (n + a) x_n = 0,
\end{cases}\quad(n \ge 2). ⎩ ⎨ ⎧ ( 1 + a ) x 1 + x 2 + ⋯ + x n = 0 , 2 x 1 + ( 2 + a ) x 2 + ⋯ + 2 x n = 0 , ⋯⋯⋯⋯⋯⋯ n x 1 + n x 2 + ⋯ + ( n + a ) x n = 0 , ( n ≥ 2 ) . 试问
a a a
取何值时,该方程组有非零解,并求出其通解.
【答案】 当
a = 0 a = 0 a = 0
或
a = − n ( n + 1 ) 2 a = -\frac{n(n+1)}{2} a = − 2 n ( n + 1 )
时,方程组有非零解。 当
a = 0 a = 0 a = 0
时,通解为
x = k 1 ( − 1 , 1 , 0 , … , 0 ) T + k 2 ( − 1 , 0 , 1 , … , 0 ) T + ⋯ + k n − 1 ( − 1 , 0 , 0 , … , 1 ) T x = k_1 (-1, 1, 0, \ldots, 0)^{\mathsf{T}} + k_2 (-1, 0, 1, \ldots, 0)^{\mathsf{T}} + \cdots + k_{n-1} (-1, 0, 0, \ldots, 1)^{\mathsf{T}} x = k 1 ( − 1 , 1 , 0 , … , 0 ) T + k 2 ( − 1 , 0 , 1 , … , 0 ) T + ⋯ + k n − 1 ( − 1 , 0 , 0 , … , 1 ) T
,其中
k 1 , k 2 , … , k n − 1 k_1, k_2, \ldots, k_{n-1} k 1 , k 2 , … , k n − 1
为任意常数。 当
a = − n ( n + 1 ) 2 a = -\frac{n(n+1)}{2} a = − 2 n ( n + 1 )
时,通解为
x = k ( 1 , 2 , 3 , … , n ) T x = k (1, 2, 3, \ldots, n)^{\mathsf{T}} x = k ( 1 , 2 , 3 , … , n ) T
,其中
k k k
为任意常数。
【解析】
对方程组的系数矩阵
A A A
作初等行变换,有
A = ( 1 + a 1 1 ⋯ 1 2 2 + a 2 ⋯ 2 ⋮ ⋮ ⋮ ⋱ ⋮ n n n ⋯ n + a ) → ( 1 + a 1 1 ⋯ 1 − 2 a a 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − n a 0 0 ⋯ a ) = B .
A = \begin{pmatrix}
1 + a & 1 & 1 & \cdots & 1 \\
2 & 2 + a & 2 & \cdots & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & n & n & \cdots & n + a
\end{pmatrix} \rightarrow \begin{pmatrix}
1 + a & 1 & 1 & \cdots & 1 \\
-2a & a & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-na & 0 & 0 & \cdots & a
\end{pmatrix} = B.
A = 1 + a 2 ⋮ n 1 2 + a ⋮ n 1 2 ⋮ n ⋯ ⋯ ⋱ ⋯ 1 2 ⋮ n + a → 1 + a − 2 a ⋮ − na 1 a ⋮ 0 1 0 ⋮ 0 ⋯ ⋯ ⋱ ⋯ 1 0 ⋮ a = B . 当
a = 0 a = 0 a = 0
时,
r ( A ) = 1 < n r(A) = 1 < n r ( A ) = 1 < n
,故该方程组有非零解。其同解方程组为
x 1 + x 2 + ⋯ + x n = 0 ,
x_1 + x_2 + \cdots + x_n = 0,
x 1 + x 2 + ⋯ + x n = 0 , 由此得基础解系为
η 1 = ( − 1 , 1 , 0 , ⋯ , 0 ) T , η 2 = ( − 1 , 0 , 1 , ⋯ , 0 ) T , ⋯ , η n − 1 = ( − 1 , 0 , 0 , ⋯ , 1 ) T .
\eta_1 = (-1, 1, 0, \cdots, 0)^T, \quad \eta_2 = (-1, 0, 1, \cdots, 0)^T, \quad \cdots, \quad \eta_{n-1} = (-1, 0, 0, \cdots, 1)^T.
η 1 = ( − 1 , 1 , 0 , ⋯ , 0 ) T , η 2 = ( − 1 , 0 , 1 , ⋯ , 0 ) T , ⋯ , η n − 1 = ( − 1 , 0 , 0 , ⋯ , 1 ) T . 于是方程组的通解为
x = k 1 η 1 + ⋯ + k n − 1 η n − 1 x = k_1 \eta_1 + \cdots + k_{n-1} \eta_{n-1} x = k 1 η 1 + ⋯ + k n − 1 η n − 1
,其中
k 1 , ⋯ , k n − 1 k_1, \cdots, k_{n-1} k 1 , ⋯ , k n − 1
为任意常数。
当
a ≠ 0 a \neq 0 a = 0
时,对矩阵
B B B
作初等行变换,有
B → ( 1 + a 1 1 ⋯ 1 − 2 1 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − n 0 0 ⋯ 1 ) → ( a + n ( n + 1 ) 2 0 0 ⋯ 0 − 2 1 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − n 0 0 ⋯ 1 ) ,
B \rightarrow \begin{pmatrix}
1 + a & 1 & 1 & \cdots & 1 \\
-2 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-n & 0 & 0 & \cdots & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
a + \frac{n(n+1)}{2} & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-n & 0 & 0 & \cdots & 1
\end{pmatrix},
B → 1 + a − 2 ⋮ − n 1 1 ⋮ 0 1 0 ⋮ 0 ⋯ ⋯ ⋱ ⋯ 1 0 ⋮ 1 → a + 2 n ( n + 1 ) − 2 ⋮ − n 0 1 ⋮ 0 0 0 ⋮ 0 ⋯ ⋯ ⋱ ⋯ 0 0 ⋮ 1 , 可知
a = − n ( n + 1 ) 2 a = -\frac{n(n+1)}{2} a = − 2 n ( n + 1 )
时,
r ( A ) = n − 1 < n r(A) = n - 1 < n r ( A ) = n − 1 < n
,故此方程组也有非零解。其同解方程组为
{ − 2 x 1 + x 2 = 0 , − 3 x 1 + x 3 = 0 , ⋮ − n x 1 + x n = 0 ,
\begin{cases}
-2x_1 + x_2 = 0, \\
-3x_1 + x_3 = 0, \\
\vdots \\
-nx_1 + x_n = 0,
\end{cases}
⎩ ⎨ ⎧ − 2 x 1 + x 2 = 0 , − 3 x 1 + x 3 = 0 , ⋮ − n x 1 + x n = 0 , 由此得基础解系为
η = ( 1 , 2 , ⋯ , n ) T \eta = (1, 2, \cdots, n)^T η = ( 1 , 2 , ⋯ , n ) T
,于是方程组的通解为
x = k η x = k \eta x = k η
,其中
k k k
为任意常数。
21 (本题满分 9 分)
设矩阵
A = ( 1 2 − 3 − 1 4 − 3 1 a 5 ) A = \begin{pmatrix}
1 & 2 & -3 \\
-1 & 4 & -3 \\
1 & a & 5
\end{pmatrix} A = 1 − 1 1 2 4 a − 3 − 3 5
的特征方程有一个二重根,求
a a a
的值,并讨论
A A A
是否可相似对角化.
【答案】 a = − 2 a = -2 a = − 2
或
a = − 2 3 a = -\frac{2}{3} a = − 3 2
;当
a = − 2 a = -2 a = − 2
时,
A A A
可相似对角化;当
a = − 2 3 a = -\frac{2}{3} a = − 3 2
时,
A A A
不可相似对角化。
【解析】 矩阵
A A A
的特征多项式为
p ( λ ) = det ( λ I − A ) = λ 3 − 10 λ 2 + ( 34 + 3 a ) λ − ( 36 + 6 a ) p(\lambda) = \det(\lambda I - A) = \lambda^3 - 10\lambda^2 + (34+3a)\lambda - (36+6a) p ( λ ) = det ( λ I − A ) = λ 3 − 10 λ 2 + ( 34 + 3 a ) λ − ( 36 + 6 a )
。特征方程有一个二重根,设二重根为
λ 0 \lambda_0 λ 0
,则
p ( λ 0 ) = 0 p(\lambda_0)=0 p ( λ 0 ) = 0
且
p ′ ( λ 0 ) = 0 p'(\lambda_0)=0 p ′ ( λ 0 ) = 0
。由
p ′ ( λ ) = 3 λ 2 − 20 λ + ( 34 + 3 a ) p'(\lambda)=3\lambda^2-20\lambda+(34+3a) p ′ ( λ ) = 3 λ 2 − 20 λ + ( 34 + 3 a )
,代入
λ 0 \lambda_0 λ 0
得:
3 λ 0 2 − 20 λ 0 + ( 34 + 3 a ) = 0 3\lambda_0^2 - 20\lambda_0 + (34+3a) = 0 3 λ 0 2 − 20 λ 0 + ( 34 + 3 a ) = 0 解得
a = − λ 0 2 + 20 3 λ 0 − 34 3 a = -\lambda_0^2 + \frac{20}{3}\lambda_0 - \frac{34}{3} a = − λ 0 2 + 3 20 λ 0 − 3 34
。代入
p ( λ 0 ) = 0 p(\lambda_0)=0 p ( λ 0 ) = 0
得:
λ 0 3 − 10 λ 0 2 + ( 34 + 3 a ) λ 0 − ( 36 + 6 a ) = 0 \lambda_0^3 - 10\lambda_0^2 + (34+3a)\lambda_0 - (36+6a) = 0 λ 0 3 − 10 λ 0 2 + ( 34 + 3 a ) λ 0 − ( 36 + 6 a ) = 0 代入
a a a
并化简得
λ 0 3 − 8 λ 0 2 + 20 λ 0 − 16 = 0 \lambda_0^3 - 8\lambda_0^2 + 20\lambda_0 - 16 = 0 λ 0 3 − 8 λ 0 2 + 20 λ 0 − 16 = 0
,因式分解为
( λ 0 − 2 ) 2 ( λ 0 − 4 ) = 0 (\lambda_0-2)^2(\lambda_0-4)=0 ( λ 0 − 2 ) 2 ( λ 0 − 4 ) = 0
,故
λ 0 = 2 \lambda_0=2 λ 0 = 2
或
λ 0 = 4 \lambda_0=4 λ 0 = 4
。 当
λ 0 = 2 \lambda_0=2 λ 0 = 2
时,
a = − 2 a = -2 a = − 2
;当
λ 0 = 4 \lambda_0=4 λ 0 = 4
时,
a = − 2 3 a = -\frac{2}{3} a = − 3 2
。 当
a = − 2 a=-2 a = − 2
时,特征值为
λ = 2 \lambda=2 λ = 2
(二重)和
λ = 6 \lambda=6 λ = 6
(单根)。计算
A − 2 I A-2I A − 2 I
的秩为 1,几何重数为 2,等于代数重数,故
A A A
可相似对角化。 当
a = − 2 3 a=-\frac{2}{3} a = − 3 2
时,特征值为
λ = 4 \lambda=4 λ = 4
(二重)和
λ = 2 \lambda=2 λ = 2
(单根)。计算
A − 4 I A-4I A − 4 I
的秩为 2,几何重数为 1,小于代数重数 2,故
A A A
不可相似对角化。
22 (本题满分 9 分)
设
A A A
,
B B B
为随机事件,且
P ( A ) = 1 4 P(A) = \frac{1}{4} P ( A ) = 4 1
,
P ( B ∣ A ) = 1 3 P(B|A) = \frac{1}{3} P ( B ∣ A ) = 3 1
,
P ( A ∣ B ) = 1 2 P(A|B) = \frac{1}{2} P ( A ∣ B ) = 2 1
.令
X = { 1 , A 发生 , 0 , A 不发生 ; Y = { 1 , B 发生 , 0 , B 不发生 . X = \begin{cases}
1, & A\;\text{发生}, \\
0, & A\;\text{不发生};
\end{cases}\qquad Y = \begin{cases}
1, & B\;\text{发生}, \\
0, & B\;\text{不发生}.
\end{cases} X = { 1 , 0 , A 发生 , A 不发生 ; Y = { 1 , 0 , B 发生 , B 不发生 . 求:
(1) 二维随机变量
( X , Y ) (X,Y) ( X , Y )
的概率分布;
(2)
X X X
和
Y Y Y
的相关系数
ρ X Y \rho_{XY} ρ X Y
.
【答案】
(1) 二维随机变量
( X , Y ) (X,Y) ( X , Y )
的概率分布为:
Y X 0 1 0 2 3 1 12 1 1 6 1 12 \begin{array}{c|cc}
& Y & \\
X & 0 & 1 \\
\hline
0 & \frac{2}{3} & \frac{1}{12} \\
1 & \frac{1}{6} & \frac{1}{12} \\
\end{array} X 0 1 Y 0 3 2 6 1 1 12 1 12 1 (2)
X X X
和
Y Y Y
的相关系数
ρ X Y = 1 15 \rho_{XY} = \frac{1}{\sqrt{15}} ρ X Y = 15 1
.
【解析】
(1) 由于
P ( A B ) = P ( A ) P ( B ∣ A ) = 1 12 P(AB) = P(A)P(B|A) = \frac{1}{12} P ( A B ) = P ( A ) P ( B ∣ A ) = 12 1
,所以
P ( B ) = P ( A B ) P ( A ∣ B ) = 1 6 P(B) = \frac{P(AB)}{P(A|B)} = \frac{1}{6} P ( B ) = P ( A ∣ B ) P ( A B ) = 6 1
。利用条件概率公式和事件间简单的运算关系,有
P { X = 1 , Y = 1 } = P ( A B ) = 1 12 , P\{X=1, Y=1\} = P(AB) = \frac{1}{12}, P { X = 1 , Y = 1 } = P ( A B ) = 12 1 ,
P { X = 1 , Y = 0 } = P ( A B ˉ ) = P ( A ) − P ( A B ) = 1 6 . P\{X=1, Y=0\} = P(A\bar{B}) = P(A) - P(AB) = \frac{1}{6}. P { X = 1 , Y = 0 } = P ( A B ˉ ) = P ( A ) − P ( A B ) = 6 1 . 第175页 共316页
P { X = 0 , Y = 1 } = P ( A ˉ B ) = P ( B ) − P ( A B ) = 1 12 , P\{X=0, Y=1\} = P(\bar{A}B) = P(B) - P(AB) = \frac{1}{12}, P { X = 0 , Y = 1 } = P ( A ˉ B ) = P ( B ) − P ( A B ) = 12 1 ,
P { X = 0 , Y = 0 } = P ( A ˉ B ˉ ) = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = 2 3 . P\{X=0, Y=0\} = P(\bar{A}\bar{B}) = 1 - P(A + B) = 1 - P(A) - P(B) + P(AB) = \frac{2}{3}. P { X = 0 , Y = 0 } = P ( A ˉ B ˉ ) = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = 3 2 . 故
( X , Y ) (X, Y) ( X , Y )
的概率分布为
Y X 0 1 0 2 3 1 12 1 1 6 1 12 \begin{array}{c|cc}
& Y & \\
X & 0 & 1 \\
\hline
0 & \frac{2}{3} & \frac{1}{12} \\
1 & \frac{1}{6} & \frac{1}{12} \\
\end{array} X 0 1 Y 0 3 2 6 1 1 12 1 12 1 (II)
X , Y X, Y X , Y
的概率分布分别为
P { X = 0 } = P { X = 0 , Y = 1 } + P { X = 0 , Y = 0 } = 2 3 + 1 12 = 3 4 , P\{X=0\} = P\{X=0, Y=1\} + P\{X=0, Y=0\} = \frac{2}{3} + \frac{1}{12} = \frac{3}{4}, P { X = 0 } = P { X = 0 , Y = 1 } + P { X = 0 , Y = 0 } = 3 2 + 12 1 = 4 3 ,
P { X = 1 } = P { X = 1 , Y = 1 } + P { X = 1 , Y = 0 } = 1 6 + 1 12 = 1 4 , P\{X=1\} = P\{X=1, Y=1\} + P\{X=1, Y=0\} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}, P { X = 1 } = P { X = 1 , Y = 1 } + P { X = 1 , Y = 0 } = 6 1 + 12 1 = 4 1 ,
P { Y = 1 } = P { X = 0 , Y = 1 } + P { X = 1 , Y = 1 } = 1 12 + 1 12 = 1 6 , P\{Y=1\} = P\{X=0, Y=1\} + P\{X=1, Y=1\} = \frac{1}{12} + \frac{1}{12} = \frac{1}{6}, P { Y = 1 } = P { X = 0 , Y = 1 } + P { X = 1 , Y = 1 } = 12 1 + 12 1 = 6 1 ,
P { Y = 0 } = 1 − P { Y = 1 } = 5 6 . P\{Y=0\} = 1 - P\{Y=1\} = \frac{5}{6}. P { Y = 0 } = 1 − P { Y = 1 } = 6 5 . 所以
X , Y X, Y X , Y
的概率分布为
X 0 1 p 3 4 1 4 \begin{array}{c|cc}
X & 0 & 1 \\
\hline
p & \frac{3}{4} & \frac{1}{4} \\
\end{array} X p 0 4 3 1 4 1 Y 0 1 p 5 6 1 6 \begin{array}{c|cc}
Y & 0 & 1 \\
\hline
p & \frac{5}{6} & \frac{1}{6} \\
\end{array} Y p 0 6 5 1 6 1 由0-1分布的数学期望和方差公式,有
E X = 1 4 , E Y = 1 6 , D X = 1 4 × 3 4 = 3 16 , D Y = 1 6 × 5 6 = 5 36 , EX = \frac{1}{4}, \quad EY = \frac{1}{6}, \quad DX = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}, \quad DY = \frac{1}{6} \times \frac{5}{6} = \frac{5}{36}, EX = 4 1 , E Y = 6 1 , D X = 4 1 × 4 3 = 16 3 , D Y = 6 1 × 6 5 = 36 5 ,
E ( X Y ) = 0 ⋅ P { X Y = 0 } + 1 ⋅ P { X Y = 1 } = P { X = 1 , Y = 1 } = 1 12 . E(XY) = 0 \cdot P\{XY = 0\} + 1 \cdot P\{XY = 1\} = P\{X=1, Y=1\} = \frac{1}{12}. E ( X Y ) = 0 ⋅ P { X Y = 0 } + 1 ⋅ P { X Y = 1 } = P { X = 1 , Y = 1 } = 12 1 . 故协方差和相关系数等于
Cov ( X , Y ) = E ( X Y ) − E X ⋅ E Y = 1 24 , ρ X Y = Cov ( X , Y ) D X ⋅ D Y = 15 15 . \operatorname{Cov}(X, Y) = E(XY) - EX \cdot EY = \frac{1}{24}, \quad \rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{DX} \cdot \sqrt{DY}} = \frac{\sqrt{15}}{15}. Cov ( X , Y ) = E ( X Y ) − EX ⋅ E Y = 24 1 , ρ X Y = D X ⋅ D Y Cov ( X , Y ) = 15 15 . 23 (本题满分 9 分)
设总体
X X X
的分布函数为
F ( x , β ) = { 1 − 1 x β , x > 1 , 0 , x ≤ 1 , F(x,\beta) = \begin{cases}
1 - \frac{1}{x^{\beta}}, & x > 1, \\
0, & x \le 1,
\end{cases} F ( x , β ) = { 1 − x β 1 , 0 , x > 1 , x ≤ 1 , 其中未知参数
β > 1 \beta > 1 β > 1
,
X 1 , X 2 , ⋯ , X n X_1,X_2, \cdots ,X_n X 1 , X 2 , ⋯ , X n
为来自总体
X X X
的简单随机样本,求:
(1)
β \beta β
的矩估计量;
(2)
β \beta β
的最大似然估计量.
【答案】
(1)
β \beta β
的矩估计量为
β ^ = X ˉ X ˉ − 1 \hat{\beta} = \frac{\bar{X}}{\bar{X} - 1} β ^ = X ˉ − 1 X ˉ
,其中
X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i X ˉ = n 1 ∑ i = 1 n X i
。
(2)
β \beta β
的最大似然估计量为
β ^ = n ∑ i = 1 n ln X i \hat{\beta} = \frac{n}{\sum_{i=1}^{n} \ln X_i} β ^ = ∑ i = 1 n l n X i n
。
【解析】
首先,由总体分布函数
F ( x , β ) F(x, \beta) F ( x , β )
求导得到概率密度函数(PDF)。 当
x > 1 x > 1 x > 1
时,
f ( x ) = d d x F ( x , β ) = β x − β − 1 ;
f(x) = \frac{d}{dx} F(x, \beta) = \beta x^{-\beta-1};
f ( x ) = d x d F ( x , β ) = β x − β − 1 ; 当
x ≤ 1 x \leq 1 x ≤ 1
时,
f ( x ) = 0.
f(x) = 0.
f ( x ) = 0. (1) 矩估计量
计算总体均值:
E [ X ] = ∫ 1 ∞ x f ( x ) d x = ∫ 1 ∞ x ⋅ β x − β − 1 d x = β ∫ 1 ∞ x − β d x .
E[X] = \int_{1}^{\infty} x f(x) \, dx = \int_{1}^{\infty} x \cdot \beta x^{-\beta-1} \, dx = \beta \int_{1}^{\infty} x^{-\beta} \, dx.
E [ X ] = ∫ 1 ∞ x f ( x ) d x = ∫ 1 ∞ x ⋅ β x − β − 1 d x = β ∫ 1 ∞ x − β d x . 由于
β > 1 \beta > 1 β > 1
,积分
∫ 1 ∞ x − β d x = 1 β − 1 ,
\int_{1}^{\infty} x^{-\beta} \, dx = \frac{1}{\beta - 1},
∫ 1 ∞ x − β d x = β − 1 1 , 因此
E [ X ] = β ⋅ 1 β − 1 = β β − 1 .
E[X] = \beta \cdot \frac{1}{\beta - 1} = \frac{\beta}{\beta - 1}.
E [ X ] = β ⋅ β − 1 1 = β − 1 β . 设样本均值
X ˉ = 1 n ∑ i = 1 n X i \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i X ˉ = n 1 ∑ i = 1 n X i
等于总体均值,即
X ˉ = β β − 1 .
\bar{X} = \frac{\beta}{\beta - 1}.
X ˉ = β − 1 β . 解方程得
β = X ˉ X ˉ − 1 ,
\beta = \frac{\bar{X}}{\bar{X} - 1},
β = X ˉ − 1 X ˉ , 因此矩估计量为
β ^ = X ˉ X ˉ − 1 .
\hat{\beta} = \frac{\bar{X}}{\bar{X} - 1}.
β ^ = X ˉ − 1 X ˉ . (2) 最大似然估计量
似然函数为
L ( β ) = ∏ i = 1 n f ( X i ) = β n ∏ i = 1 n X i − β − 1 .
L(\beta) = \prod_{i=1}^{n} f(X_i) = \beta^n \prod_{i=1}^{n} X_i^{-\beta - 1}.
L ( β ) = i = 1 ∏ n f ( X i ) = β n i = 1 ∏ n X i − β − 1 . 取对数得
l ( β ) = ln L ( β ) = n ln β − ( β + 1 ) ∑ i = 1 n ln X i .
l(\beta) = \ln L(\beta) = n \ln \beta - (\beta + 1) \sum_{i=1}^{n} \ln X_i.
l ( β ) = ln L ( β ) = n ln β − ( β + 1 ) i = 1 ∑ n ln X i . 对
β \beta β
求导并令导数为零:
d l d β = n β − ∑ i = 1 n ln X i = 0 ,
\frac{d l}{d \beta} = \frac{n}{\beta} - \sum_{i=1}^{n} \ln X_i = 0,
d β d l = β n − i = 1 ∑ n ln X i = 0 , 解得
β = n ∑ i = 1 n ln X i .
\beta = \frac{n}{\sum_{i=1}^{n} \ln X_i}.
β = ∑ i = 1 n ln X i n . 二阶导数为
d 2 l d β 2 = − n β 2 < 0 ,
\frac{d^2 l}{d \beta^2} = -\frac{n}{\beta^2} < 0,
d β 2 d 2 l = − β 2 n < 0 , 故为最大值点,因此最大似然估计量为
β ^ = n ∑ i = 1 n ln X i .
\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \ln X_i}.
β ^ = ∑ i = 1 n ln X i n .