卷 1 填空题 1~6小题,每小题4分,共24分
1 曲线
y = x 2 2 x + 1 y = \frac{x^2}{2x + 1} y = 2 x + 1 x 2
的斜渐近线方程为 ______.
【答案】 y = 1 2 x − 1 4 y = \frac{1}{2} x - \frac{1}{4} y = 2 1 x − 4 1
【解析】 曲线
y = x 2 2 x + 1 y = \frac{x^2}{2x + 1} y = 2 x + 1 x 2
的斜渐近线形式为
y = m x + b y = mx + b y = m x + b
。 首先求斜率
m m m
:
m = lim x → ∞ y x = lim x → ∞ x 2 2 x + 1 x = lim x → ∞ x 2 x + 1 = lim x → ∞ 1 2 + 1 x = 1 2 m = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{\frac{x^2}{2x + 1}}{x} = \lim_{x \to \infty} \frac{x}{2x + 1} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{x}} = \frac{1}{2} m = x → ∞ lim x y = x → ∞ lim x 2 x + 1 x 2 = x → ∞ lim 2 x + 1 x = x → ∞ lim 2 + x 1 1 = 2 1 然后求截距
b b b
:
b = lim x → ∞ ( y − m x ) = lim x → ∞ ( x 2 2 x + 1 − 1 2 x ) = lim x → ∞ 2 x 2 − x ( 2 x + 1 ) 2 ( 2 x + 1 ) = lim x → ∞ − x 4 x + 2 = lim x → ∞ − 1 4 + 2 x = − 1 4 b = \lim_{x \to \infty} (y - mx) = \lim_{x \to \infty} \left( \frac{x^2}{2x + 1} - \frac{1}{2} x \right) = \lim_{x \to \infty} \frac{2x^2 - x(2x + 1)}{2(2x + 1)} = \lim_{x \to \infty} \frac{-x}{4x + 2} = \lim_{x \to \infty} \frac{-1}{4 + \frac{2}{x}} = -\frac{1}{4} b = x → ∞ lim ( y − m x ) = x → ∞ lim ( 2 x + 1 x 2 − 2 1 x ) = x → ∞ lim 2 ( 2 x + 1 ) 2 x 2 − x ( 2 x + 1 ) = x → ∞ lim 4 x + 2 − x = x → ∞ lim 4 + x 2 − 1 = − 4 1 因此,斜渐近线方程为
y = 1 2 x − 1 4 y = \frac{1}{2} x - \frac{1}{4} y = 2 1 x − 4 1
。
2 微分方程
x y ′ + 2 y = x ln x xy' + 2y = x\ln x x y ′ + 2 y = x ln x
满足
y ( 1 ) = − 1 9 y(1) = - \frac{1}{9} y ( 1 ) = − 9 1
的解为 ______.
【答案】 y = x 3 ln x − x 9 y = \frac{x}{3} \ln x - \frac{x}{9} y = 3 x ln x − 9 x
【解析】 给定微分方程
x y ′ + 2 y = x ln x xy' + 2y = x\ln x x y ′ + 2 y = x ln x
和初始条件
y ( 1 ) = − 1 9 y(1) = -\frac{1}{9} y ( 1 ) = − 9 1
。 首先,将方程化为标准形式
y ′ + P ( x ) y = Q ( x ) y' + P(x)y = Q(x) y ′ + P ( x ) y = Q ( x )
,即
y ′ + 2 x y = ln x y' + \frac{2}{x}y = \ln x y ′ + x 2 y = ln x 其中
P ( x ) = 2 x P(x) = \frac{2}{x} P ( x ) = x 2
,
Q ( x ) = ln x Q(x) = \ln x Q ( x ) = ln x
。 计算积分因子
μ ( x ) = e ∫ P ( x ) d x = e ∫ 2 x d x = e 2 ln x = x 2 \mu(x) = e^{\int P(x) \, dx} = e^{\int \frac{2}{x} \, dx} = e^{2\ln x} = x^2 μ ( x ) = e ∫ P ( x ) d x = e ∫ x 2 d x = e 2 l n x = x 2
。 将原方程乘以积分因子:
x 2 y ′ + 2 x y = x 2 ln x x^2 y' + 2x y = x^2 \ln x x 2 y ′ + 2 x y = x 2 ln x 左边可写为
d d x ( x 2 y ) \frac{d}{dx}(x^2 y) d x d ( x 2 y )
,因此
d d x ( x 2 y ) = x 2 ln x \frac{d}{dx}(x^2 y) = x^2 \ln x d x d ( x 2 y ) = x 2 ln x 两边积分:
x 2 y = ∫ x 2 ln x d x x^2 y = \int x^2 \ln x \, dx x 2 y = ∫ x 2 ln x d x 计算积分: 设
u = ln x u = \ln x u = ln x
,
d v = x 2 d x dv = x^2 \, dx d v = x 2 d x
,则
d u = 1 x d x du = \frac{1}{x} dx d u = x 1 d x
,
v = x 3 3 v = \frac{x^3}{3} v = 3 x 3
,
∫ x 2 ln x d x = x 3 3 ln x − ∫ x 3 3 ⋅ 1 x d x = x 3 3 ln x − 1 3 ∫ x 2 d x = x 3 3 ln x − 1 3 ⋅ x 3 3 = x 3 3 ln x − x 3 9 \int x^2 \ln x \, dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \cdot \frac{1}{x} dx = \frac{x^3}{3} \ln x - \frac{1}{3} \int x^2 \, dx = \frac{x^3}{3} \ln x - \frac{1}{3} \cdot \frac{x^3}{3} = \frac{x^3}{3} \ln x - \frac{x^3}{9} ∫ x 2 ln x d x = 3 x 3 ln x − ∫ 3 x 3 ⋅ x 1 d x = 3 x 3 ln x − 3 1 ∫ x 2 d x = 3 x 3 ln x − 3 1 ⋅ 3 x 3 = 3 x 3 ln x − 9 x 3 所以
x 2 y = x 3 3 ln x − x 3 9 + C x^2 y = \frac{x^3}{3} \ln x - \frac{x^3}{9} + C x 2 y = 3 x 3 ln x − 9 x 3 + C 解得
y = x 3 ln x − x 9 + C x 2 y = \frac{x}{3} \ln x - \frac{x}{9} + \frac{C}{x^2} y = 3 x ln x − 9 x + x 2 C 代入初始条件
y ( 1 ) = − 1 9 y(1) = -\frac{1}{9} y ( 1 ) = − 9 1
:
− 1 9 = 1 3 ln 1 − 1 9 + C -\frac{1}{9} = \frac{1}{3} \ln 1 - \frac{1}{9} + C − 9 1 = 3 1 ln 1 − 9 1 + C 由于
ln 1 = 0 \ln 1 = 0 ln 1 = 0
,有
− 1 9 = 0 − 1 9 + C -\frac{1}{9} = 0 - \frac{1}{9} + C − 9 1 = 0 − 9 1 + C 解得
C = 0 C = 0 C = 0
。 因此,解为
y = x 3 ln x − x 9 y = \frac{x}{3} \ln x - \frac{x}{9} y = 3 x ln x − 9 x 3 设函数
u ( x , y , z ) = 1 + x 2 6 + y 2 12 + z 2 18 u(x,y,z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18} u ( x , y , z ) = 1 + 6 x 2 + 12 y 2 + 18 z 2
,
单位向量
n ⃗ = 1 3 { 1 , 1 , 1 } \vec{n} = \frac{1}{\sqrt{3}}\{1,1,1\} n = 3 1 { 1 , 1 , 1 }
,则
∂ u ∂ n ∣ ( 1 , 2 , 3 ) = \frac{\pdu}{\pdn}\big|_{(1,2,3)} = ∂ n ∂ u ( 1 , 2 , 3 ) =
______.
【答案】
1 3 \frac{1}{\sqrt{3}} 3 1
【解析】
函数
u ( x , y , z ) = 1 + x 2 6 + y 2 12 + z 2 18 u(x,y,z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18} u ( x , y , z ) = 1 + 6 x 2 + 12 y 2 + 18 z 2
在点
( 1 , 2 , 3 ) (1,2,3) ( 1 , 2 , 3 )
处沿单位向量
n ⃗ = 1 3 ( 1 , 1 , 1 ) \vec{n} = \frac{1}{\sqrt{3}}(1,1,1) n = 3 1 ( 1 , 1 , 1 )
的方向导数
∂ u ∂ n \frac{\partial u}{\partial n} ∂ n ∂ u
由梯度
∇ u \nabla u ∇ u
与
n ⃗ \vec{n} n
的点积给出。
首先计算梯度
∇ u \nabla u ∇ u
:
∂ u ∂ x = x 3 , ∂ u ∂ y = y 6 , ∂ u ∂ z = z 9 \frac{\partial u}{\partial x} = \frac{x}{3}, \quad \frac{\partial u}{\partial y} = \frac{y}{6}, \quad \frac{\partial u}{\partial z} = \frac{z}{9} ∂ x ∂ u = 3 x , ∂ y ∂ u = 6 y , ∂ z ∂ u = 9 z 因此,
∇ u = ( x 3 , y 6 , z 9 ) \nabla u = \left( \frac{x}{3}, \frac{y}{6}, \frac{z}{9} \right) ∇ u = ( 3 x , 6 y , 9 z ) 在点
( 1 , 2 , 3 ) (1,2,3) ( 1 , 2 , 3 )
处,
∇ u ∣ ( 1 , 2 , 3 ) = ( 1 3 , 2 6 , 3 9 ) = ( 1 3 , 1 3 , 1 3 ) \nabla u|_{(1,2,3)} = \left( \frac{1}{3}, \frac{2}{6}, \frac{3}{9} \right) = \left( \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) ∇ u ∣ ( 1 , 2 , 3 ) = ( 3 1 , 6 2 , 9 3 ) = ( 3 1 , 3 1 , 3 1 ) 然后计算点积:
∂ u ∂ n = ∇ u ⋅ n ⃗ = ( 1 3 , 1 3 , 1 3 ) ⋅ 1 3 ( 1 , 1 , 1 ) = 1 3 ⋅ 1 3 + 1 3 ⋅ 1 3 + 1 3 ⋅ 1 3 = 3 ⋅ 1 3 ⋅ 1 3 = 1 3 \frac{\partial u}{\partial n} = \nabla u \cdot \vec{n} = \left( \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \cdot \frac{1}{\sqrt{3}}(1,1,1) = \frac{1}{3} \cdot \frac{1}{\sqrt{3}} + \frac{1}{3} \cdot \frac{1}{\sqrt{3}} + \frac{1}{3} \cdot \frac{1}{\sqrt{3}} = 3 \cdot \frac{1}{3} \cdot \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} ∂ n ∂ u = ∇ u ⋅ n = ( 3 1 , 3 1 , 3 1 ) ⋅ 3 1 ( 1 , 1 , 1 ) = 3 1 ⋅ 3 1 + 3 1 ⋅ 3 1 + 3 1 ⋅ 3 1 = 3 ⋅ 3 1 ⋅ 3 1 = 3 1 故方向导数为
1 3 \frac{1}{\sqrt{3}} 3 1
。
4 设
Ω \Omega Ω
是由锥面
z = x 2 + y 2 z = \sqrt{x^2 + y^2} z = x 2 + y 2
与半球面
z = R 2 − x 2 − y 2 z = \sqrt{R^2 - x^2 - y^2} z = R 2 − x 2 − y 2
围成的空间区域,
Σ \Sigma Σ
是
Ω \Omega Ω
的整个边界的外侧,则
∬ Σ x d y d z + y d z d x + z d x d y = \iint_{\Sigma}x\dy\dz + y\dz\dx + z\dx\dy = ∬ Σ x d y d z + y d z d x + z d x d y =
______.
【答案】
π R 3 ( 2 − 2 ) \pi R^3 (2 - \sqrt{2}) π R 3 ( 2 − 2 )
【解析】
根据高斯公式,将曲面积分转化为体积分:
∬ Σ x d y d z + y d z d x + z d x d y = ∭ Ω ( ∂ x ∂ x + ∂ y ∂ y + ∂ z ∂ z ) d V = ∭ Ω 3 d V = 3 ∭ Ω d V . \iint_{\Sigma} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy = \iiint_{\Omega} \left( \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) dV = \iiint_{\Omega} 3 \, dV = 3 \iiint_{\Omega} dV. ∬ Σ x d y d z + y d z d x + z d x d y = ∭ Ω ( ∂ x ∂ x + ∂ y ∂ y + ∂ z ∂ z ) d V = ∭ Ω 3 d V = 3 ∭ Ω d V . 其中,
Ω \Omega Ω
是由锥面
z = x 2 + y 2 z = \sqrt{x^2 + y^2} z = x 2 + y 2
与半球面
z = R 2 − x 2 − y 2 z = \sqrt{R^2 - x^2 - y^2} z = R 2 − x 2 − y 2
围成的区域。计算区域
Ω \Omega Ω
的体积,使用柱坐标变换:
x = r cos θ , y = r sin θ , z = z , d V = r d r d θ d z . x = r \cos \theta, \quad y = r \sin \theta, \quad z = z, \quad dV = r \, dr \, d\theta \, dz. x = r cos θ , y = r sin θ , z = z , d V = r d r d θ d z . 锥面与半球面相交于
x 2 + y 2 = R 2 2 x^2 + y^2 = \frac{R^2}{2} x 2 + y 2 = 2 R 2
,即
r = R 2 r = \frac{R}{\sqrt{2}} r = 2 R
。对于
r ∈ [ 0 , R 2 ] r \in [0, \frac{R}{\sqrt{2}}] r ∈ [ 0 , 2 R ]
,
z z z
从锥面
z = r z = r z = r
到半球面
z = R 2 − r 2 z = \sqrt{R^2 - r^2} z = R 2 − r 2
。体积分为:
∭ Ω d V = ∫ 0 2 π d θ ∫ 0 R 2 r d r ∫ r R 2 − r 2 d z = ∫ 0 2 π d θ ∫ 0 R 2 r ( R 2 − r 2 − r ) d r . \iiint_{\Omega} dV = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{R}{\sqrt{2}}} r \, dr \int_{r}^{\sqrt{R^2 - r^2}} dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{R}{\sqrt{2}}} r \left( \sqrt{R^2 - r^2} - r \right) dr. ∭ Ω d V = ∫ 0 2 π d θ ∫ 0 2 R r d r ∫ r R 2 − r 2 d z = ∫ 0 2 π d θ ∫ 0 2 R r ( R 2 − r 2 − r ) d r . 计算径向积分:
∫ 0 R 2 r R 2 − r 2 d r = R 3 3 ( 1 − 1 2 3 / 2 ) , ∫ 0 R 2 r 2 d r = R 3 3 ⋅ 2 3 / 2 . \int_{0}^{\frac{R}{\sqrt{2}}} r \sqrt{R^2 - r^2} \, dr = \frac{R^3}{3} \left(1 - \frac{1}{2^{3/2}}\right), \quad \int_{0}^{\frac{R}{\sqrt{2}}} r^2 \, dr = \frac{R^3}{3 \cdot 2^{3/2}}. ∫ 0 2 R r R 2 − r 2 d r = 3 R 3 ( 1 − 2 3/2 1 ) , ∫ 0 2 R r 2 d r = 3 ⋅ 2 3/2 R 3 . 所以,
∫ 0 R 2 r ( R 2 − r 2 − r ) d r = R 3 3 ( 1 − 1 2 3 / 2 − 1 2 3 / 2 ) = R 3 3 ( 1 − 1 2 ) . \int_{0}^{\frac{R}{\sqrt{2}}} r \left( \sqrt{R^2 - r^2} - r \right) dr = \frac{R^3}{3} \left(1 - \frac{1}{2^{3/2}} - \frac{1}{2^{3/2}}\right) = \frac{R^3}{3} \left(1 - \frac{1}{\sqrt{2}}\right). ∫ 0 2 R r ( R 2 − r 2 − r ) d r = 3 R 3 ( 1 − 2 3/2 1 − 2 3/2 1 ) = 3 R 3 ( 1 − 2 1 ) . 因此,
∭ Ω d V = 2 π ⋅ R 3 3 ( 1 − 1 2 ) = 2 π R 3 3 ( 1 − 1 2 ) . \iiint_{\Omega} dV = 2\pi \cdot \frac{R^3}{3} \left(1 - \frac{1}{\sqrt{2}}\right) = \frac{2\pi R^3}{3} \left(1 - \frac{1}{\sqrt{2}}\right). ∭ Ω d V = 2 π ⋅ 3 R 3 ( 1 − 2 1 ) = 3 2 π R 3 ( 1 − 2 1 ) . 曲面积分为:
3 ⋅ 2 π R 3 3 ( 1 − 1 2 ) = 2 π R 3 ( 1 − 1 2 ) = π R 3 ( 2 − 2 ) . 3 \cdot \frac{2\pi R^3}{3} \left(1 - \frac{1}{\sqrt{2}}\right) = 2\pi R^3 \left(1 - \frac{1}{\sqrt{2}}\right) = \pi R^3 (2 - \sqrt{2}). 3 ⋅ 3 2 π R 3 ( 1 − 2 1 ) = 2 π R 3 ( 1 − 2 1 ) = π R 3 ( 2 − 2 ) . 故答案为
π R 3 ( 2 − 2 ) \pi R^3 (2 - \sqrt{2}) π R 3 ( 2 − 2 )
。
5 设
α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α 1 , α 2 , α 3
均为3维列向量,记矩阵
A = ( α 1 , α 2 , α 3 ) , B = ( α 1 + α 2 + α 3 , α 1 + 2 α 2 + 4 α 3 , α 1 + 3 α 2 + 9 α 3 ) , A = (\alpha_1,\alpha_2,\alpha_3),\quad
B = (\alpha_1 + \alpha_2 + \alpha_3,\alpha_1 + 2\alpha_2 + 4\alpha_3,\alpha_1 + 3\alpha_2 + 9\alpha_3), A = ( α 1 , α 2 , α 3 ) , B = ( α 1 + α 2 + α 3 , α 1 + 2 α 2 + 4 α 3 , α 1 + 3 α 2 + 9 α 3 ) , 如果
∣ A ∣ = 1 |A| = 1 ∣ A ∣ = 1
,那么
∣ B ∣ = |B| = ∣ B ∣ =
______.
【答案】
2
【解析】
已知矩阵
A = ( α 1 , α 2 , α 3 ) A = (\alpha_1, \alpha_2, \alpha_3) A = ( α 1 , α 2 , α 3 )
且
∣ A ∣ = 1 |A| = 1 ∣ A ∣ = 1
,矩阵
B = ( α 1 + α 2 + α 3 , α 1 + 2 α 2 + 4 α 3 , α 1 + 3 α 2 + 9 α 3 ) B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3) B = ( α 1 + α 2 + α 3 , α 1 + 2 α 2 + 4 α 3 , α 1 + 3 α 2 + 9 α 3 )
。 将
B B B
表示为
B = A C B = A C B = A C
,其中
C C C
是一个系数矩阵。 通过分析
B B B
的列向量:
第一列
α 1 + α 2 + α 3 = A ( 1 1 1 ) \alpha_1 + \alpha_2 + \alpha_3 = A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} α 1 + α 2 + α 3 = A 1 1 1
, 第二列
α 1 + 2 α 2 + 4 α 3 = A ( 1 2 4 ) \alpha_1 + 2\alpha_2 + 4\alpha_3 = A \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} α 1 + 2 α 2 + 4 α 3 = A 1 2 4
, 第三列
α 1 + 3 α 2 + 9 α 3 = A ( 1 3 9 ) \alpha_1 + 3\alpha_2 + 9\alpha_3 = A \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} α 1 + 3 α 2 + 9 α 3 = A 1 3 9
, 因此
C = ( 1 1 1 1 2 3 1 4 9 ) C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} C = 1 1 1 1 2 4 1 3 9
。 于是
∣ B ∣ = ∣ A ∣ ⋅ ∣ C ∣ = 1 ⋅ ∣ C ∣ |B| = |A| \cdot |C| = 1 \cdot |C| ∣ B ∣ = ∣ A ∣ ⋅ ∣ C ∣ = 1 ⋅ ∣ C ∣
。 计算
∣ C ∣ |C| ∣ C ∣
:∣ C ∣ = ∣ 1 1 1 1 2 3 1 4 9 ∣ = 1 ⋅ ∣ 2 3 4 9 ∣ − 1 ⋅ ∣ 1 3 1 9 ∣ + 1 ⋅ ∣ 1 2 1 4 ∣ = 1 ⋅ ( 18 − 12 ) − 1 ⋅ ( 9 − 3 ) + 1 ⋅ ( 4 − 2 ) = 6 − 6 + 2 = 2. |C| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 1 \cdot \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 1 \cdot (18-12) - 1 \cdot (9-3) + 1 \cdot (4-2) = 6 - 6 + 2 = 2. ∣ C ∣ = 1 1 1 1 2 4 1 3 9 = 1 ⋅ 2 4 3 9 − 1 ⋅ 1 1 3 9 + 1 ⋅ 1 1 2 4 = 1 ⋅ ( 18 − 12 ) − 1 ⋅ ( 9 − 3 ) + 1 ⋅ ( 4 − 2 ) = 6 − 6 + 2 = 2.
或者,
C C C
是范德蒙德矩阵,节点为
1 , 2 , 3 1, 2, 3 1 , 2 , 3
,其行列式为
( 2 − 1 ) ( 3 − 1 ) ( 3 − 2 ) = 1 × 2 × 1 = 2 (2-1)(3-1)(3-2) = 1 \times 2 \times 1 = 2 ( 2 − 1 ) ( 3 − 1 ) ( 3 − 2 ) = 1 × 2 × 1 = 2
。 故
∣ B ∣ = 2 |B| = 2 ∣ B ∣ = 2
。 6 从数
1 1 1
,
2 2 2
,
3 3 3
,
4 4 4
中任取一个数,记为
X X X
,再从
1 , 2 , ⋯ , X 1,2, \cdots ,X 1 , 2 , ⋯ , X
中任取一个数,记为
Y Y Y
,
则
P { Y = 2 } = P\{Y = 2\} = P { Y = 2 } =
______.
【答案】
13 48 \dfrac{13}{48} 48 13
【解析】
首先,
X X X
从集合
{ 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} { 1 , 2 , 3 , 4 }
中等概率取值的概率为
P { X = i } = 1 4 P\{X = i\} = \dfrac{1}{4} P { X = i } = 4 1
,其中
i = 1 , 2 , 3 , 4 i = 1, 2, 3, 4 i = 1 , 2 , 3 , 4
。 然后,在给定
X X X
的条件下,
Y Y Y
从集合
{ 1 , 2 , ⋯ , X } \{1, 2, \cdots, X\} { 1 , 2 , ⋯ , X }
中等概率取值。 因此,
P { Y = 2 ∣ X = i } P\{Y = 2 \mid X = i\} P { Y = 2 ∣ X = i }
取决于
i i i
:
当
X = 1 X = 1 X = 1
时,
Y Y Y
只能取 1,故
P { Y = 2 ∣ X = 1 } = 0 P\{Y = 2 \mid X = 1\} = 0 P { Y = 2 ∣ X = 1 } = 0
; 当
X = 2 X = 2 X = 2
时,
Y Y Y
从
{ 1 , 2 } \{1, 2\} { 1 , 2 }
中取,故
P { Y = 2 ∣ X = 2 } = 1 2 P\{Y = 2 \mid X = 2\} = \dfrac{1}{2} P { Y = 2 ∣ X = 2 } = 2 1
; 当
X = 3 X = 3 X = 3
时,
Y Y Y
从
{ 1 , 2 , 3 } \{1, 2, 3\} { 1 , 2 , 3 }
中取,故
P { Y = 2 ∣ X = 3 } = 1 3 P\{Y = 2 \mid X = 3\} = \dfrac{1}{3} P { Y = 2 ∣ X = 3 } = 3 1
; 当
X = 4 X = 4 X = 4
时,
Y Y Y
从
{ 1 , 2 , 3 , 4 } \{1, 2, 3, 4\} { 1 , 2 , 3 , 4 }
中取,故
P { Y = 2 ∣ X = 4 } = 1 4 P\{Y = 2 \mid X = 4\} = \dfrac{1}{4} P { Y = 2 ∣ X = 4 } = 4 1
。 由全概率公式:P { Y = 2 } = ∑ i = 1 4 P { X = i } ⋅ P { Y = 2 ∣ X = i } P\{Y = 2\} = \sum_{i=1}^{4} P\{X = i\} \cdot P\{Y = 2 \mid X = i\} P { Y = 2 } = ∑ i = 1 4 P { X = i } ⋅ P { Y = 2 ∣ X = i }
代入计算:P { Y = 2 } = 1 4 × 0 + 1 4 × 1 2 + 1 4 × 1 3 + 1 4 × 1 4 = 1 4 ( 0 + 1 2 + 1 3 + 1 4 ) P\{Y = 2\} = \frac{1}{4} \times 0 + \frac{1}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \left( 0 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) P { Y = 2 } = 4 1 × 0 + 4 1 × 2 1 + 4 1 × 3 1 + 4 1 × 4 1 = 4 1 ( 0 + 2 1 + 3 1 + 4 1 )
计算括号内和:1 2 + 1 3 + 1 4 = 6 12 + 4 12 + 3 12 = 13 12 \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{6}{12} + \frac{4}{12} + \frac{3}{12} = \frac{13}{12} 2 1 + 3 1 + 4 1 = 12 6 + 12 4 + 12 3 = 12 13
所以:P { Y = 2 } = 1 4 × 13 12 = 13 48 P\{Y = 2\} = \frac{1}{4} \times \frac{13}{12} = \frac{13}{48} P { Y = 2 } = 4 1 × 12 13 = 48 13
因此,答案为
13 48 \dfrac{13}{48} 48 13
。 选择题 7~14小题,每小题4分,共32分
7 设函数
f ( x ) = lim n → ∞ 1 + ∣ x ∣ 3 n n f(x) = \lim_{n \to \infty} \sqrt[n]{1+|x|^{3n}} f ( x ) = lim n → ∞ n 1 + ∣ x ∣ 3 n
,则
f ( x ) f(x) f ( x )
在
( − ∞ , + ∞ ) (-\infty , +\infty) ( − ∞ , + ∞ )
内
查看答案与解析
收藏
正确答案:C 【解析】 函数
f ( x ) = lim n → ∞ 1 + ∣ x ∣ 3 n n f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}} f ( x ) = lim n → ∞ n 1 + ∣ x ∣ 3 n
的极限计算如下:
当
∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1
时,
∣ x ∣ 3 n → 0 |x|^{3n} \to 0 ∣ x ∣ 3 n → 0
,故
f ( x ) = 1 f(x) = 1 f ( x ) = 1
。 当
∣ x ∣ = 1 |x| = 1 ∣ x ∣ = 1
时,
1 + ∣ x ∣ 3 n = 2 1 + |x|^{3n} = 2 1 + ∣ x ∣ 3 n = 2
,故
f ( x ) = lim n → ∞ 2 n = 1 f(x) = \lim_{n \to \infty} \sqrt[n]{2} = 1 f ( x ) = lim n → ∞ n 2 = 1
。 当
∣ x ∣ > 1 |x| > 1 ∣ x ∣ > 1
时,
∣ x ∣ 3 n → ∞ |x|^{3n} \to \infty ∣ x ∣ 3 n → ∞
,故
f ( x ) = ∣ x ∣ 3 f(x) = |x|^3 f ( x ) = ∣ x ∣ 3
。 因此,
f ( x ) = { 1 if ∣ x ∣ ≤ 1 ∣ x ∣ 3 if ∣ x ∣ > 1 f(x) = \begin{cases} 1 & \text{if } |x| \leq 1 \\ |x|^3 & \text{if } |x| > 1 \end{cases} f ( x ) = { 1 ∣ x ∣ 3 if ∣ x ∣ ≤ 1 if ∣ x ∣ > 1
。 由于
f ( x ) f(x) f ( x )
是偶函数,只需考虑
x ≥ 0 x \geq 0 x ≥ 0
时的可导性。
在
x = 0 x=0 x = 0
处,
f ( x ) = 1 f(x) = 1 f ( x ) = 1
常数,可导,导数为 0。 在
x = 1 x=1 x = 1
处,左导数为 0,右导数为 3,不可导。 由偶函数对称性,在
x = − 1 x=-1 x = − 1
处同样不可导。 在
∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1
且
x ≠ 0 x \neq 0 x = 0
时,
f ( x ) = 1 f(x) = 1 f ( x ) = 1
可导;在
∣ x ∣ > 1 |x| > 1 ∣ x ∣ > 1
时,
f ( x ) = ∣ x ∣ 3 f(x) = |x|^3 f ( x ) = ∣ x ∣ 3
可导。 因此,不可导点恰为
x = 1 x=1 x = 1
和
x = − 1 x=-1 x = − 1
,共两个不可导点。 8 设
F ( x ) F(x) F ( x )
是连续函数
f ( x ) f(x) f ( x )
的一个原函数,表示“
M M M
的充分必要条件是
N N N
”,则必有
查看答案与解析
收藏
正确答案:A 【解析】 设
F ( x ) F(x) F ( x )
是
f ( x ) f(x) f ( x )
的一个原函数,即
F ′ ( x ) = f ( x ) F'(x) = f(x) F ′ ( x ) = f ( x )
。
对于选项 A:若
F ( x ) F(x) F ( x )
是偶函数,即
F ( − x ) = F ( x ) F(-x) = F(x) F ( − x ) = F ( x )
,求导得
− F ′ ( − x ) = F ′ ( x ) -F'(-x) = F'(x) − F ′ ( − x ) = F ′ ( x )
,即
f ( − x ) = − f ( x ) f(-x) = -f(x) f ( − x ) = − f ( x )
,所以
f ( x ) f(x) f ( x )
是奇函数;反之,若
f ( x ) f(x) f ( x )
是奇函数,考虑原函数
F ( x ) = ∫ 0 x f ( t ) d t F(x) = \int_0^x f(t) \, dt F ( x ) = ∫ 0 x f ( t ) d t
,则
F ( − x ) = ∫ 0 − x f ( t ) d t F(-x) = \int_0^{-x} f(t) \, dt F ( − x ) = ∫ 0 − x f ( t ) d t
,令
u = − t u = -t u = − t
,得
F ( − x ) = ∫ 0 x f ( − u ) ( − d u ) = ∫ 0 x − f ( u ) ( − d u ) = ∫ 0 x f ( u ) d u = F ( x ) F(-x) = \int_0^x f(-u) \, (-du) = \int_0^x -f(u) \, (-du) = \int_0^x f(u) \, du = F(x) F ( − x ) = ∫ 0 x f ( − u ) ( − d u ) = ∫ 0 x − f ( u ) ( − d u ) = ∫ 0 x f ( u ) d u = F ( x )
,所以
F ( x ) F(x) F ( x )
是偶函数,且任意原函数
F ( x ) + C F(x) + C F ( x ) + C
也是偶函数。因此
F ( x ) F(x) F ( x )
是偶函数
⇔ \Leftrightarrow ⇔
f ( x ) f(x) f ( x )
是奇函数,选项 A 正确。 对于选项 B:若
F ( x ) F(x) F ( x )
是奇函数,则
F ( − x ) = − F ( x ) F(-x) = -F(x) F ( − x ) = − F ( x )
,求导得
− F ′ ( − x ) = − F ′ ( x ) -F'(-x) = -F'(x) − F ′ ( − x ) = − F ′ ( x )
,即
f ( − x ) = f ( x ) f(-x) = f(x) f ( − x ) = f ( x )
,所以
f ( x ) f(x) f ( x )
是偶函数;但若
f ( x ) f(x) f ( x )
是偶函数,原函数
F ( x ) = ∫ 0 x f ( t ) d t F(x) = \int_0^x f(t) \, dt F ( x ) = ∫ 0 x f ( t ) d t
是奇函数,但其他原函数
F ( x ) + C F(x) + C F ( x ) + C
可能不是奇函数(当
C ≠ 0 C \neq 0 C = 0
),因此
⇔ \Leftrightarrow ⇔
不成立。 对于选项 C:若
F ( x ) F(x) F ( x )
是周期函数,则
F ( x + T ) = F ( x ) F(x+T) = F(x) F ( x + T ) = F ( x )
,求导得
f ( x + T ) = f ( x ) f(x+T) = f(x) f ( x + T ) = f ( x )
,所以
f ( x ) f(x) f ( x )
是周期函数;但若
f ( x ) f(x) f ( x )
是周期函数,原函数
F ( x ) = ∫ 0 x f ( t ) d t F(x) = \int_0^x f(t) \, dt F ( x ) = ∫ 0 x f ( t ) d t
满足
F ( x + T ) = F ( x ) + ∫ 0 T f ( t ) d t F(x+T) = F(x) + \int_0^T f(t) \, dt F ( x + T ) = F ( x ) + ∫ 0 T f ( t ) d t
,当
∫ 0 T f ( t ) d t ≠ 0 \int_0^T f(t) \, dt \neq 0 ∫ 0 T f ( t ) d t = 0
时
F ( x ) F(x) F ( x )
不是周期函数,因此
⇔ \Leftrightarrow ⇔
不成立。 对于选项 D:若
F ( x ) F(x) F ( x )
是单调函数,则
f ( x ) = F ′ ( x ) ≥ 0 f(x) = F'(x) \geq 0 f ( x ) = F ′ ( x ) ≥ 0
(或
≤ 0 \leq 0 ≤ 0
),但
f ( x ) f(x) f ( x )
不一定单调;反之,若
f ( x ) f(x) f ( x )
是单调函数,原函数
F ( x ) F(x) F ( x )
不一定单调,例如
f ( x ) = x f(x) = x f ( x ) = x
单调递增,但原函数
F ( x ) = x 2 2 F(x) = \frac{x^2}{2} F ( x ) = 2 x 2
在
( − ∞ , 0 ) (-\infty, 0) ( − ∞ , 0 )
递减,在
( 0 , ∞ ) (0, \infty) ( 0 , ∞ )
递增,不是单调函数,因此
⇔ \Leftrightarrow ⇔
不成立。 故正确答案为 A。 9 设函数
u ( x , y ) = ϕ ( x + y ) + ϕ ( x − y ) + ∫ x − y x + y ψ ( t ) d t u(x,y) = \phi(x + y) + \phi(x - y) + \int_{x - y}^{x + y} \psi(t)\dt u ( x , y ) = ϕ ( x + y ) + ϕ ( x − y ) + ∫ x − y x + y ψ ( t ) d t
,
其中函数
ϕ \phi ϕ
具有二阶导数,
ψ \psi ψ
具有一阶导数,则必有
查看答案与解析
收藏
正确答案:B 【解析】 给定函数
u ( x , y ) = ϕ ( x + y ) + ϕ ( x − y ) + ∫ x − y x + y ψ ( t ) d t u(x,y) = \phi(x + y) + \phi(x - y) + \int_{x - y}^{x + y} \psi(t) \, dt u ( x , y ) = ϕ ( x + y ) + ϕ ( x − y ) + ∫ x − y x + y ψ ( t ) d t
,其中
ϕ \phi ϕ
具有二阶导数,
ψ \psi ψ
具有一阶导数。计算一阶偏导数:
∂ u ∂ x = ϕ ′ ( x + y ) + ϕ ′ ( x − y ) + ψ ( x + y ) − ψ ( x − y ) \frac{\partial u}{\partial x} = \phi'(x + y) + \phi'(x - y) + \psi(x + y) - \psi(x - y) ∂ x ∂ u = ϕ ′ ( x + y ) + ϕ ′ ( x − y ) + ψ ( x + y ) − ψ ( x − y )
∂ u ∂ y = ϕ ′ ( x + y ) − ϕ ′ ( x − y ) + ψ ( x + y ) + ψ ( x − y ) \frac{\partial u}{\partial y} = \phi'(x + y) - \phi'(x - y) + \psi(x + y) + \psi(x - y) ∂ y ∂ u = ϕ ′ ( x + y ) − ϕ ′ ( x − y ) + ψ ( x + y ) + ψ ( x − y ) 接着计算二阶偏导数:
∂ 2 u ∂ x 2 = ϕ ′ ′ ( x + y ) + ϕ ′ ′ ( x − y ) + ψ ′ ( x + y ) − ψ ′ ( x − y ) \frac{\partial^2 u}{\partial x^2} = \phi''(x + y) + \phi''(x - y) + \psi'(x + y) - \psi'(x - y) ∂ x 2 ∂ 2 u = ϕ ′′ ( x + y ) + ϕ ′′ ( x − y ) + ψ ′ ( x + y ) − ψ ′ ( x − y )
∂ 2 u ∂ y 2 = ϕ ′ ′ ( x + y ) + ϕ ′ ′ ( x − y ) + ψ ′ ( x + y ) − ψ ′ ( x − y ) \frac{\partial^2 u}{\partial y^2} = \phi''(x + y) + \phi''(x - y) + \psi'(x + y) - \psi'(x - y) ∂ y 2 ∂ 2 u = ϕ ′′ ( x + y ) + ϕ ′′ ( x − y ) + ψ ′ ( x + y ) − ψ ′ ( x − y ) 比较得
∂ 2 u ∂ x 2 = ∂ 2 u ∂ y 2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2} ∂ x 2 ∂ 2 u = ∂ y 2 ∂ 2 u
,故选项 B 正确。其他选项不成立,例如混合偏导数
∂ 2 u ∂ x ∂ y = ϕ ′ ′ ( x + y ) − ϕ ′ ′ ( x − y ) + ψ ′ ( x + y ) + ψ ′ ( x − y ) \frac{\partial^2 u}{\partial x \partial y} = \phi''(x + y) - \phi''(x - y) + \psi'(x + y) + \psi'(x - y) ∂ x ∂ y ∂ 2 u = ϕ ′′ ( x + y ) − ϕ ′′ ( x − y ) + ψ ′ ( x + y ) + ψ ′ ( x − y )
与
∂ 2 u ∂ x 2 \frac{\partial^2 u}{\partial x^2} ∂ x 2 ∂ 2 u
或
∂ 2 u ∂ y 2 \frac{\partial^2 u}{\partial y^2} ∂ y 2 ∂ 2 u
均不相等。
10 设有三元方程
x y − z ln y + e x z = 1 xy - z\ln y + \e^{xz} = 1 x y − z ln y + e x z = 1
,根据隐函数存在定理,
存在点
( 0 , 1 , 1 ) (0,1,1) ( 0 , 1 , 1 )
的一个邻域,在此邻域内该方程
查看答案与解析
收藏
正确答案:D 【解析】 定义函数
F ( x , y , z ) = x y − z ln y + e x z − 1 F(x,y,z) = xy - z \ln y + e^{xz} - 1 F ( x , y , z ) = x y − z ln y + e x z − 1
,在点
( 0 , 1 , 1 ) (0,1,1) ( 0 , 1 , 1 )
处,
F ( 0 , 1 , 1 ) = 0 ⋅ 1 − 1 ⋅ ln 1 + e 0 ⋅ 1 − 1 = 0 − 0 + 1 − 1 = 0 F(0,1,1) = 0 \cdot 1 - 1 \cdot \ln 1 + e^{0 \cdot 1} - 1 = 0 - 0 + 1 - 1 = 0 F ( 0 , 1 , 1 ) = 0 ⋅ 1 − 1 ⋅ ln 1 + e 0 ⋅ 1 − 1 = 0 − 0 + 1 − 1 = 0
,满足隐函数存在定理的条件。计算偏导数:
∂ F ∂ x = y + z e x z \frac{\partial F}{\partial x} = y + z e^{xz} ∂ x ∂ F = y + z e x z
,在
( 0 , 1 , 1 ) (0,1,1) ( 0 , 1 , 1 )
处值为
1 + 1 ⋅ e 0 = 2 ≠ 0 1 + 1 \cdot e^0 = 2 \neq 0 1 + 1 ⋅ e 0 = 2 = 0
;
∂ F ∂ y = x − z y \frac{\partial F}{\partial y} = x - \frac{z}{y} ∂ y ∂ F = x − y z
,在
( 0 , 1 , 1 ) (0,1,1) ( 0 , 1 , 1 )
处值为
0 − 1 1 = − 1 ≠ 0 0 - \frac{1}{1} = -1 \neq 0 0 − 1 1 = − 1 = 0
;
∂ F ∂ z = − ln y + x e x z \frac{\partial F}{\partial z} = -\ln y + x e^{xz} ∂ z ∂ F = − ln y + x e x z
,在
( 0 , 1 , 1 ) (0,1,1) ( 0 , 1 , 1 )
处值为
− ln 1 + 0 ⋅ e 0 = 0 -\ln 1 + 0 \cdot e^0 = 0 − ln 1 + 0 ⋅ e 0 = 0
。由于
∂ F ∂ z = 0 \frac{\partial F}{\partial z} = 0 ∂ z ∂ F = 0
,不能确定隐函数
z = z ( x , y ) z = z(x,y) z = z ( x , y )
;但
∂ F ∂ x ≠ 0 \frac{\partial F}{\partial x} \neq 0 ∂ x ∂ F = 0
和
∂ F ∂ y ≠ 0 \frac{\partial F}{\partial y} \neq 0 ∂ y ∂ F = 0
,因此可以确定隐函数
x = x ( y , z ) x = x(y,z) x = x ( y , z )
和
y = y ( x , z ) y = y(x,z) y = y ( x , z )
,且它们具有连续偏导数。故选项 D 正确。
11 设
λ 1 , λ 2 \lambda_1,\lambda_2 λ 1 , λ 2
是矩阵
A A A
的两个不同的特征值,对应的特征向量分别为
α 1 , α 2 \alpha_1,\alpha_2 α 1 , α 2
,
则
α 1 \alpha_1 α 1
,
A ( α 1 + α 2 ) A(\alpha_1 + \alpha_2) A ( α 1 + α 2 )
线性无关的充分必要条件是
查看答案与解析
收藏
正确答案:B 【解析】 设向量组为
α 1 \alpha_1 α 1
与
A ( α 1 + α 2 ) A(\alpha_1 + \alpha_2) A ( α 1 + α 2 )
。 已知
A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 ,
A\alpha_1 = \lambda_1\alpha_1,\quad A\alpha_2 = \lambda_2\alpha_2,
A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 , 所以
A ( α 1 + α 2 ) = λ 1 α 1 + λ 2 α 2 .
A(\alpha_1 + \alpha_2) = \lambda_1\alpha_1 + \lambda_2\alpha_2.
A ( α 1 + α 2 ) = λ 1 α 1 + λ 2 α 2 . 考虑线性组合
c 1 α 1 + c 2 ( λ 1 α 1 + λ 2 α 2 ) = 0 ,
c_1\alpha_1 + c_2\bigl(\lambda_1\alpha_1 + \lambda_2\alpha_2\bigr) = 0,
c 1 α 1 + c 2 ( λ 1 α 1 + λ 2 α 2 ) = 0 , 整理得
( c 1 + c 2 λ 1 ) α 1 + c 2 λ 2 α 2 = 0.
(c_1 + c_2\lambda_1)\alpha_1 + c_2\lambda_2\alpha_2 = 0.
( c 1 + c 2 λ 1 ) α 1 + c 2 λ 2 α 2 = 0. 由于
α 1 \alpha_1 α 1
与
α 2 \alpha_2 α 2
属于不同特征值,它们线性无关,因此系数必须全为零:
{ c 1 + c 2 λ 1 = 0 , c 2 λ 2 = 0.
\begin{cases}
c_1 + c_2\lambda_1 = 0, \\
c_2\lambda_2 = 0.
\end{cases}
{ c 1 + c 2 λ 1 = 0 , c 2 λ 2 = 0. 若
λ 2 ≠ 0 \lambda_2 \neq 0 λ 2 = 0
,则
c 2 = 0 c_2 = 0 c 2 = 0
,代入第一式得
c 1 = 0 c_1 = 0 c 1 = 0
,向量组线性无关。 若
λ 2 = 0 \lambda_2 = 0 λ 2 = 0
,则
c 2 c_2 c 2
可取任意非零值,如取
c 2 = 1 c_2 = 1 c 2 = 1
,则
c 1 = − λ 1 c_1 = -\lambda_1 c 1 = − λ 1
,存在非零解,向量组线性相关。 因此,向量组线性无关的充要条件是
λ 2 ≠ 0 \lambda_2 \neq 0 λ 2 = 0
,对应选项 B 。
12 设
A A A
为
n n n
(
n ≥ 2 n \ge 2 n ≥ 2
)阶可逆矩阵,交换
A A A
的第
1 1 1
行与第
2 2 2
行得矩阵
B B B
,
A ∗ , B ∗ A^*,B^* A ∗ , B ∗
分别为
A A A
,
B B B
的伴随矩阵,则
查看答案与解析
收藏
正确答案:C 【解析】 设
A A A
为
n n n
阶可逆矩阵,交换
A A A
的第
1 1 1
行与第
2 2 2
行得矩阵
B B B
,即
B = E 12 A B = E_{12} A B = E 12 A
,其中
E 12 E_{12} E 12
为交换两行的初等矩阵。由伴随矩阵的性质,
A ∗ = ∣ A ∣ A − 1 A^* = |A| A^{-1} A ∗ = ∣ A ∣ A − 1
,
B ∗ = ∣ B ∣ B − 1 B^* = |B| B^{-1} B ∗ = ∣ B ∣ B − 1
。由于交换两行改变行列式的符号,有
∣ B ∣ = − ∣ A ∣ |B| = -|A| ∣ B ∣ = − ∣ A ∣
。同时,
B − 1 = A − 1 E 12 − 1 = A − 1 E 12 B^{-1} = A^{-1} E_{12}^{-1} = A^{-1} E_{12} B − 1 = A − 1 E 12 − 1 = A − 1 E 12
(因为
E 12 − 1 = E 12 E_{12}^{-1} = E_{12} E 12 − 1 = E 12
)。代入得
B ∗ = ( − ∣ A ∣ ) A − 1 E 12 = − ( ∣ A ∣ A − 1 ) E 12 = − A ∗ E 12 B^* = (-|A|) A^{-1} E_{12} = - (|A| A^{-1}) E_{12} = - A^* E_{12} B ∗ = ( − ∣ A ∣ ) A − 1 E 12 = − ( ∣ A ∣ A − 1 ) E 12 = − A ∗ E 12
。右乘
E 12 E_{12} E 12
表示交换矩阵的列,因此
A ∗ E 12 A^* E_{12} A ∗ E 12
是交换
A ∗ A^* A ∗
的第
1 1 1
列与第
2 2 2
列后的矩阵。故
B ∗ = − ( A ∗ 1 2 ) B^* = - (A^* \text{ } 1 \text{ } 2 \text{ }) B ∗ = − ( A ∗ 1 2 )
,即交换
A ∗ A^* A ∗
的第
1 1 1
列与第
2 2 2
列得
− B ∗ - B^* − B ∗
。选项 C 正确。
通过
n = 2 n=2 n = 2
的例子验证:设
A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A = ( a c b d )
,则
A ∗ = ( d − b − c a ) A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} A ∗ = ( d − c − b a )
。交换行得
B = ( c d a b ) B = \begin{pmatrix} c & d \\ a & b \end{pmatrix} B = ( c a d b )
,则
B ∗ = ( b − d − a c ) B^* = \begin{pmatrix} b & -d \\ -a & c \end{pmatrix} B ∗ = ( b − a − d c )
。交换
A ∗ A^* A ∗
的第
1 1 1
列与第
2 2 2
列得
( − b d a − c ) = − B ∗ \begin{pmatrix} -b & d \\ a & -c \end{pmatrix} = - B^* ( − b a d − c ) = − B ∗
,符合结论。其他选项不成立。
13 设二维随机变量
( X , Y ) (X,Y) ( X , Y )
的概率分布为
X \ Y 0 1 0 0.4 a 1 b 0.1
\begin{array}{|c|cc|}
\hline
X\backslash Y & 0 & 1 \\
\hline
0 & 0.4 & a \\
1 & b & 0.1 \\
\hline
\end{array}
X \ Y 0 1 0 0.4 b 1 a 0.1 已知随机事件
{ X = 0 } \{X = 0\} { X = 0 }
与
{ X + Y = 1 } \{X + Y = 1\} { X + Y = 1 }
相互独立,则
查看答案与解析
收藏
正确答案:B 【解析】 由概率分布的性质,所有概率之和为 1,即
0.4 + a + b + 0.1 = 1 ,
0.4 + a + b + 0.1 = 1,
0.4 + a + b + 0.1 = 1 , 解得
a + b = 0.5.
a + b = 0.5.
a + b = 0.5. 事件
{ X = 0 } \{X=0\} { X = 0 }
与
{ X + Y = 1 } \{X+Y=1\} { X + Y = 1 }
相互独立,因此
P ( { X = 0 } ∩ { X + Y = 1 } ) = P ( { X = 0 } ) ⋅ P ( { X + Y = 1 } ) .
P(\{X=0\} \cap \{X+Y=1\}) = P(\{X=0\}) \cdot P(\{X+Y=1\}).
P ({ X = 0 } ∩ { X + Y = 1 }) = P ({ X = 0 }) ⋅ P ({ X + Y = 1 }) . 其中,
P ( { X = 0 } ) = P ( X = 0 , Y = 0 ) + P ( X = 0 , Y = 1 ) = 0.4 + a , P ( { X + Y = 1 } ) = P ( X = 0 , Y = 1 ) + P ( X = 1 , Y = 0 ) = a + b , P ( { X = 0 } ∩ { X + Y = 1 } ) = P ( X = 0 , Y = 1 ) = a .
\begin{gather*}
P(\{X=0\}) = P(X=0,Y=0) + P(X=0,Y=1) = 0.4 + a, \\
P(\{X+Y=1\}) = P(X=0,Y=1) + P(X=1,Y=0) = a + b, \\
P(\{X=0\} \cap \{X+Y=1\}) = P(X=0,Y=1) = a.
\end{gather*}
P ({ X = 0 }) = P ( X = 0 , Y = 0 ) + P ( X = 0 , Y = 1 ) = 0.4 + a , P ({ X + Y = 1 }) = P ( X = 0 , Y = 1 ) + P ( X = 1 , Y = 0 ) = a + b , P ({ X = 0 } ∩ { X + Y = 1 }) = P ( X = 0 , Y = 1 ) = a . 代入独立条件得:
a = ( 0.4 + a ) ( a + b ) .
a = (0.4 + a)(a + b).
a = ( 0.4 + a ) ( a + b ) . 由
a + b = 0.5 a + b = 0.5 a + b = 0.5
,代入得:
a = ( 0.4 + a ) × 0.5 ,
a = (0.4 + a) \times 0.5,
a = ( 0.4 + a ) × 0.5 , 解得
进而
验证:
P ( { X = 0 } ) = 0.8 , P ( { X + Y = 1 } ) = 0.5 , P ( 交集 ) = 0.4 ,
P(\{X=0\}) = 0.8, \quad P(\{X+Y=1\}) = 0.5, \quad P(\text{交集}) = 0.4,
P ({ X = 0 }) = 0.8 , P ({ X + Y = 1 }) = 0.5 , P ( 交集 ) = 0.4 , 乘积为
0.8 × 0.5 = 0.4 0.8 \times 0.5 = 0.4 0.8 × 0.5 = 0.4
,满足独立条件。
因此,选项 B 正确。
14 设
X 1 , X 2 , ⋯ , X n ( n ≥ 2 ) X_1,X_2, \cdots ,X_n(n \ge 2) X 1 , X 2 , ⋯ , X n ( n ≥ 2 )
为来自总体
N ( 0 , 1 ) N(0,1) N ( 0 , 1 )
的简单随机样本,
X ‾ \overline{X} X
为样本均值,
S 2 S^2 S 2
为样本方差,则
查看答案与解析
收藏
正确答案:D 【解析】
应选 (D)。因
X 1 , X 2 , ⋯ , X n ( n ≥ 2 ) X_1, X_2, \cdots, X_n(n \geq 2) X 1 , X 2 , ⋯ , X n ( n ≥ 2 )
为来自总体
N ( 0 , 1 ) N(0,1) N ( 0 , 1 )
的简单随机样本,故有
X ‾ = 1 n ∑ i = 1 n X i ∼ N ( 0 , 1 n )
\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim N(0, \frac{1}{n})
X = n 1 i = 1 ∑ n X i ∼ N ( 0 , n 1 ) 根据正态总体抽样分布理论有
X ‾ − 0 1 / n = n X ‾ ∼ N ( 0 , 1 ) , ( n − 1 ) S 2 σ 2 = ( n − 1 ) S 2 1 2 = ( n − 1 ) S 2 ∼ χ 2 ( n − 1 ) , X ‾ − 0 S / n = n X ‾ S ∼ t ( n − 1 ) ;
\begin{gather*}
\frac{\overline{X}-0}{1/\sqrt{n}} = \sqrt{n}\overline{X} \sim N(0,1), \\
\frac{(n-1)S^2}{\sigma^2} = \frac{(n-1)S^2}{1^2} = (n-1)S^2 \sim \chi^2(n-1), \\
\frac{\overline{X}-0}{S/\sqrt{n}} = \frac{\sqrt{n}\overline{X}}{S} \sim t(n-1);
\end{gather*}
1/ n X − 0 = n X ∼ N ( 0 , 1 ) , σ 2 ( n − 1 ) S 2 = 1 2 ( n − 1 ) S 2 = ( n − 1 ) S 2 ∼ χ 2 ( n − 1 ) , S / n X − 0 = S n X ∼ t ( n − 1 ) ; 故排除选项 (A)、(B)、(C)。又
X 1 2 ∼ χ 2 ( 1 ) , ∑ i = 2 n X i 2 ∼ χ 2 ( n − 1 ) ,
X_1^2 \sim \chi^2(1), \quad \sum_{i=2}^n X_i^2 \sim \chi^2(n-1),
X 1 2 ∼ χ 2 ( 1 ) , i = 2 ∑ n X i 2 ∼ χ 2 ( n − 1 ) , 且
X 1 2 X_1^2 X 1 2
与
∑ i = 2 n X i 2 \sum_{i=2}^n X_i^2 ∑ i = 2 n X i 2
相互独立,于是
X 1 2 / 1 ∑ i = 2 n X i 2 / ( n − 1 ) = ( n − 1 ) X 1 2 ∑ i = 2 n X i 2 ∼ F ( 1 , n − 1 ) .
\frac{X_1^2/1}{\sum_{i=2}^n X_i^2/(n-1)} = \frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1,n-1).
∑ i = 2 n X i 2 / ( n − 1 ) X 1 2 /1 = ∑ i = 2 n X i 2 ( n − 1 ) X 1 2 ∼ F ( 1 , n − 1 ) . 故应选 (D)。
解答题 15~23小题,共94分
15 (本题满分 11 分)
设
D = { ( x , y ) ∣ x 2 + y 2 ≤ 2 , x ≥ 0 , y ≥ 0 } D = \{(x,y)\left| x^2 + y^2 \le \sqrt{2} ,x \ge 0,y \ge 0 \right.\} D = {( x , y ) x 2 + y 2 ≤ 2 , x ≥ 0 , y ≥ 0 }
,
[ 1 + x 2 + y 2 ] [1 + x^2 + y^2] [ 1 + x 2 + y 2 ]
表示不超过
1 + x 2 + y 2 1 + x^2 + y^2 1 + x 2 + y 2
的最大整数.
计算二重积分
∬ D x y [ 1 + x 2 + y 2 ] d x d y . \iint_D xy[1 + x^2 + y^2]\dx\dy. ∬ D x y [ 1 + x 2 + y 2 ] d x d y .
【答案】
3 8 \dfrac{3}{8} 8 3
【解析】
区域
D D D
是四分之一圆盘
x 2 + y 2 ≤ 2 x^2 + y^2 \le \sqrt{2} x 2 + y 2 ≤ 2
,
x ≥ 0 x \ge 0 x ≥ 0
,
y ≥ 0 y \ge 0 y ≥ 0
。引入极坐标变换
x = r cos θ x = r\cos\theta x = r cos θ
,
y = r sin θ y = r\sin\theta y = r sin θ
,则
D D D
对应于
0 ≤ θ ≤ π / 2 0 \le \theta \le \pi/2 0 ≤ θ ≤ π /2
,
0 ≤ r ≤ 2 = 2 1 / 4 0 \le r \le \sqrt{\sqrt{2}} = 2^{1/4} 0 ≤ r ≤ 2 = 2 1/4
。积分变为:
∬ D x y [ 1 + x 2 + y 2 ] d x d y = ∫ 0 π / 2 ∫ 0 2 1 / 4 r 2 cos θ sin θ [ 1 + r 2 ] ⋅ r d r d θ = 1 2 ∫ 0 π / 2 sin 2 θ d θ ∫ 0 2 1 / 4 r 3 [ 1 + r 2 ] d r . \iint_D xy[1 + x^2 + y^2] \, dx\,dy = \int_0^{\pi/2} \int_0^{2^{1/4}} r^2 \cos\theta \sin\theta [1 + r^2] \cdot r \, dr\,d\theta = \frac{1}{2} \int_0^{\pi/2} \sin 2\theta \, d\theta \int_0^{2^{1/4}} r^3 [1 + r^2] \, dr. ∬ D x y [ 1 + x 2 + y 2 ] d x d y = ∫ 0 π /2 ∫ 0 2 1/4 r 2 cos θ sin θ [ 1 + r 2 ] ⋅ r d r d θ = 2 1 ∫ 0 π /2 sin 2 θ d θ ∫ 0 2 1/4 r 3 [ 1 + r 2 ] d r . 由于
1 + r 2 ∈ [ 1 , 1 + 2 ] 1 + r^2 \in [1, 1+\sqrt{2}] 1 + r 2 ∈ [ 1 , 1 + 2 ]
,且
2 ≈ 1.414 \sqrt{2} \approx 1.414 2 ≈ 1.414
,故
1 + r 2 ∈ [ 1 , 2.414 ) 1 + r^2 \in [1, 2.414) 1 + r 2 ∈ [ 1 , 2.414 )
,取整函数
[ 1 + r 2 ] [1 + r^2] [ 1 + r 2 ]
在
r 2 < 1 r^2 < 1 r 2 < 1
时取值为 1,在
r 2 ≥ 1 r^2 \ge 1 r 2 ≥ 1
时取值为 2。因此将
r r r
的积分分段:
∫ 0 2 1 / 4 r 3 [ 1 + r 2 ] d r = ∫ 0 1 r 3 ⋅ 1 d r + ∫ 1 2 1 / 4 r 3 ⋅ 2 d r = [ r 4 4 ] 0 1 + 2 [ r 4 4 ] 1 2 1 / 4 = 1 4 + 1 2 ( ( 2 1 / 4 ) 4 − 1 ) = 1 4 + 1 2 ( 2 − 1 ) = 3 4 . \int_0^{2^{1/4}} r^3 [1 + r^2] \, dr = \int_0^1 r^3 \cdot 1 \, dr + \int_1^{2^{1/4}} r^3 \cdot 2 \, dr = \left[ \frac{r^4}{4} \right]_0^1 + 2 \left[ \frac{r^4}{4} \right]_1^{2^{1/4}} = \frac{1}{4} + \frac{1}{2} \left( (2^{1/4})^4 - 1 \right) = \frac{1}{4} + \frac{1}{2}(2 - 1) = \frac{3}{4}. ∫ 0 2 1/4 r 3 [ 1 + r 2 ] d r = ∫ 0 1 r 3 ⋅ 1 d r + ∫ 1 2 1/4 r 3 ⋅ 2 d r = [ 4 r 4 ] 0 1 + 2 [ 4 r 4 ] 1 2 1/4 = 4 1 + 2 1 ( ( 2 1/4 ) 4 − 1 ) = 4 1 + 2 1 ( 2 − 1 ) = 4 3 . 又,
∫ 0 π / 2 sin 2 θ d θ = [ − 1 2 cos 2 θ ] 0 π / 2 = − 1 2 ( − 1 − 1 ) = 1. \int_0^{\pi/2} \sin 2\theta \, d\theta = \left[ -\frac{1}{2} \cos 2\theta \right]_0^{\pi/2} = -\frac{1}{2}(-1 - 1) = 1. ∫ 0 π /2 sin 2 θ d θ = [ − 2 1 cos 2 θ ] 0 π /2 = − 2 1 ( − 1 − 1 ) = 1. 因此,
∬ D x y [ 1 + x 2 + y 2 ] d x d y = 1 2 ⋅ 1 ⋅ 3 4 = 3 8 . \iint_D xy[1 + x^2 + y^2] \, dx\,dy = \frac{1}{2} \cdot 1 \cdot \frac{3}{4} = \frac{3}{8}. ∬ D x y [ 1 + x 2 + y 2 ] d x d y = 2 1 ⋅ 1 ⋅ 4 3 = 8 3 . 16 (本题满分 12 分)
求幂级数
∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + 1 n ( 2 n − 1 ) ) x 2 n \sum_{n = 1}^{\infty}(- 1)^{n - 1}\left(1 + \frac{1}{n(2n - 1)} \right) x^{2n} ∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + n ( 2 n − 1 ) 1 ) x 2 n
的收敛区间与和函数
f ( x ) f(x) f ( x )
.
【答案】 收敛区间为
( − 1 , 1 ) (-1, 1) ( − 1 , 1 )
,和函数为
f ( x ) = x 2 1 + x 2 − ln ( 1 + x 2 ) + 2 x arctan x . f(x) = \frac{x^2}{1+x^2} - \ln(1 + x^2) + 2x \arctan x. f ( x ) = 1 + x 2 x 2 − ln ( 1 + x 2 ) + 2 x arctan x . 【解析】 考虑幂级数
∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + 1 n ( 2 n − 1 ) ) x 2 n \sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{1}{n(2n-1)}\right) x^{2n} ∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + n ( 2 n − 1 ) 1 ) x 2 n
。令
y = x 2 y = x^2 y = x 2
,则级数化为
∑ n = 1 ∞ c n y n \sum_{n=1}^{\infty} c_n y^n ∑ n = 1 ∞ c n y n
,其中
c n = ( − 1 ) n − 1 ( 1 + 1 n ( 2 n − 1 ) ) c_n = (-1)^{n-1} \left(1 + \frac{1}{n(2n-1)}\right) c n = ( − 1 ) n − 1 ( 1 + n ( 2 n − 1 ) 1 )
。 使用比值判别法:
lim n → ∞ ∣ c n + 1 c n ∣ = lim n → ∞ ∣ 1 + 1 ( n + 1 ) ( 2 n + 1 ) 1 + 1 n ( 2 n − 1 ) ∣ = 1 , \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \left| \frac{1 + \frac{1}{(n+1)(2n+1)}}{1 + \frac{1}{n(2n-1)}} \right| = 1, n → ∞ lim c n c n + 1 = n → ∞ lim 1 + n ( 2 n − 1 ) 1 1 + ( n + 1 ) ( 2 n + 1 ) 1 = 1 , 故收敛半径
R = 1 R = 1 R = 1
,即当
∣ y ∣ < 1 |y| < 1 ∣ y ∣ < 1
时收敛,
∣ y ∣ > 1 |y| > 1 ∣ y ∣ > 1
时发散。由于
y = x 2 y = x^2 y = x 2
,有
∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1
时收敛,
∣ x ∣ > 1 |x| > 1 ∣ x ∣ > 1
时发散。 当
∣ x ∣ = 1 |x| = 1 ∣ x ∣ = 1
时,级数为
∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + 1 n ( 2 n − 1 ) ) \sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{1}{n(2n-1)}\right) ∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + n ( 2 n − 1 ) 1 )
。将其拆分为
∑ n = 1 ∞ ( − 1 ) n − 1 \sum_{n=1}^{\infty} (-1)^{n-1} ∑ n = 1 ∞ ( − 1 ) n − 1
和
∑ n = 1 ∞ ( − 1 ) n − 1 1 n ( 2 n − 1 ) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} ∑ n = 1 ∞ ( − 1 ) n − 1 n ( 2 n − 1 ) 1
。前者通项不趋于零,发散;后者绝对收敛。故整体在
∣ x ∣ = 1 |x| = 1 ∣ x ∣ = 1
时发散。收敛区间为
( − 1 , 1 ) (-1, 1) ( − 1 , 1 )
。
求和函数
f ( x ) f(x) f ( x )
:
f ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 ( 1 + 1 n ( 2 n − 1 ) ) x 2 n = ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n + ∑ n = 1 ∞ ( − 1 ) n − 1 1 n ( 2 n − 1 ) x 2 n = S 1 ( x ) + S 2 ( x ) . f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \left(1 + \frac{1}{n(2n-1)}\right) x^{2n} = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n} = S_1(x) + S_2(x). f ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 ( 1 + n ( 2 n − 1 ) 1 ) x 2 n = n = 1 ∑ ∞ ( − 1 ) n − 1 x 2 n + n = 1 ∑ ∞ ( − 1 ) n − 1 n ( 2 n − 1 ) 1 x 2 n = S 1 ( x ) + S 2 ( x ) . 其中
S 1 ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n = x 2 1 + x 2 , ∣ x ∣ < 1. S_1(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} = \frac{x^2}{1 + x^2}, \quad |x| < 1. S 1 ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 x 2 n = 1 + x 2 x 2 , ∣ x ∣ < 1. 对于
S 2 ( x ) S_2(x) S 2 ( x )
:
S 2 ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 1 n ( 2 n − 1 ) x 2 n . S_2(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n}. S 2 ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 n ( 2 n − 1 ) 1 x 2 n . 分解
1 n ( 2 n − 1 ) = − 1 n + 2 2 n − 1 \frac{1}{n(2n-1)} = -\frac{1}{n} + \frac{2}{2n-1} n ( 2 n − 1 ) 1 = − n 1 + 2 n − 1 2
,
S 2 ( x ) = − ∑ n = 1 ∞ ( − 1 ) n − 1 1 n x 2 n + 2 ∑ n = 1 ∞ ( − 1 ) n − 1 1 2 n − 1 x 2 n = − A ( x ) + 2 B ( x ) . S_2(x) = -\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{2n} + 2\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} = -A(x) + 2B(x). S 2 ( x ) = − n = 1 ∑ ∞ ( − 1 ) n − 1 n 1 x 2 n + 2 n = 1 ∑ ∞ ( − 1 ) n − 1 2 n − 1 1 x 2 n = − A ( x ) + 2 B ( x ) . 其中
A ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 1 n x 2 n = ln ( 1 + x 2 ) , ∣ x ∣ < 1 , A(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{2n} = \ln(1 + x^2), \quad |x| < 1, A ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 n 1 x 2 n = ln ( 1 + x 2 ) , ∣ x ∣ < 1 ,
B ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 1 2 n − 1 x 2 n = x 2 ∑ m = 0 ∞ ( − 1 ) m x 2 m 2 m + 1 = x arctan x , ∣ x ∣ < 1. B(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1} x^{2n} = x^2 \sum_{m=0}^{\infty} (-1)^m \frac{x^{2m}}{2m+1} = x \arctan x, \quad |x| < 1. B ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 2 n − 1 1 x 2 n = x 2 m = 0 ∑ ∞ ( − 1 ) m 2 m + 1 x 2 m = x arctan x , ∣ x ∣ < 1. 故
S 2 ( x ) = − ln ( 1 + x 2 ) + 2 x arctan x . S_2(x) = -\ln(1 + x^2) + 2x \arctan x. S 2 ( x ) = − ln ( 1 + x 2 ) + 2 x arctan x . 因此,
f ( x ) = S 1 ( x ) + S 2 ( x ) = x 2 1 + x 2 − ln ( 1 + x 2 ) + 2 x arctan x , ∣ x ∣ < 1. f(x) = S_1(x) + S_2(x) = \frac{x^2}{1 + x^2} - \ln(1 + x^2) + 2x \arctan x, \quad |x| < 1. f ( x ) = S 1 ( x ) + S 2 ( x ) = 1 + x 2 x 2 − ln ( 1 + x 2 ) + 2 x arctan x , ∣ x ∣ < 1. 17 (本题满分 11 分)
如图,曲线
C C C
的方程为
y = f ( x ) y = f(x) y = f ( x )
,点
( 3 , 2 ) (3,2) ( 3 , 2 )
是它的一个拐点,
直线
l 1 l_1 l 1
与
l 2 l_2 l 2
分别是曲线
C C C
在点
( 0 , 0 ) (0,0) ( 0 , 0 )
与
( 3 , 2 ) (3,2) ( 3 , 2 )
处的切线,
其交点为
( 2 , 4 ) (2,4) ( 2 , 4 )
. 设函数
f ( x ) f(x) f ( x )
具有三阶连续导数,
计算定积分
∫ 0 3 ( x 2 + x ) f ′ ′ ′ ( x ) d x \int_0^3 (x^2 + x)f'''(x)\dx ∫ 0 3 ( x 2 + x ) f ′′′ ( x ) d x
.
【答案】
20 20 20
【解析】
由直线
l 1 l_1 l 1
过
( 0 , 0 ) (0,0) ( 0 , 0 )
和
( 2 , 4 ) (2,4) ( 2 , 4 )
两点知直线
l 1 l_1 l 1
的斜率为
2 2 2
。由直线
l 1 l_1 l 1
是曲线
C C C
在点
( 0 , 0 ) (0,0) ( 0 , 0 )
的切线,由导数的几何意义知
f ′ ( 0 ) = 2 f'(0) = 2 f ′ ( 0 ) = 2
。同理可得
f ′ ( 3 ) = − 2 f'(3) = -2 f ′ ( 3 ) = − 2
。另外由点
( 3 , 2 ) (3,2) ( 3 , 2 )
是曲线
C C C
的一个拐点知
f ′ ′ ( 3 ) = 0 f''(3) = 0 f ′′ ( 3 ) = 0
。由分部积分公式,
∫ 0 3 ( x 2 + x ) f ′ ′ ′ ( x ) d x = ∫ 0 3 ( x 2 + x ) d ( f ′ ′ ( x ) ) = [ ( x 2 + x ) f ′ ′ ( x ) ] 0 3 − ∫ 0 3 f ′ ′ ( x ) ( 2 x + 1 ) d x = − ∫ 0 3 ( 2 x + 1 ) d ( f ′ ( x ) ) = − [ ( 2 x + 1 ) f ′ ( x ) ] 0 3 + 2 ∫ 0 3 f ′ ( x ) d x = 16 + 2 [ f ( 3 ) − f ( 0 ) ] = 20.
\begin{align*}
\int_{0}^{3} (x^2 + x)f'''(x)dx &= \int_{0}^{3} (x^2 + x)d(f''(x)) \\
&= [(x^2 + x)f''(x)]_{0}^{3} - \int_{0}^{3} f''(x)(2x+1)dx \\
&= -\int_{0}^{3} (2x+1)d(f'(x)) \\
&= -[(2x+1)f'(x)]_{0}^{3} + 2\int_{0}^{3} f'(x)dx \\
&= 16 + 2[f(3) - f(0)] = 20.
\end{align*}
∫ 0 3 ( x 2 + x ) f ′′′ ( x ) d x = ∫ 0 3 ( x 2 + x ) d ( f ′′ ( x )) = [( x 2 + x ) f ′′ ( x ) ] 0 3 − ∫ 0 3 f ′′ ( x ) ( 2 x + 1 ) d x = − ∫ 0 3 ( 2 x + 1 ) d ( f ′ ( x )) = − [( 2 x + 1 ) f ′ ( x ) ] 0 3 + 2 ∫ 0 3 f ′ ( x ) d x = 16 + 2 [ f ( 3 ) − f ( 0 )] = 20. 18 (本题满分 12 分)
已知函数
f ( x ) f(x) f ( x )
在
[ 0 , 1 ] [0,1] [ 0 , 1 ]
上连续,在
( 0 , 1 ) (0,1) ( 0 , 1 )
内可导,且
f ( 0 ) = 0 , f ( 1 ) = 1 f(0) = 0,f(1) = 1 f ( 0 ) = 0 , f ( 1 ) = 1
. 证明:
(1) 存在
ξ ∈ ( 0 , 1 ) , \xi \in(0,1), ξ ∈ ( 0 , 1 ) ,
使得
f ( ξ ) = 1 − ξ f(\xi) = 1 - \xi f ( ξ ) = 1 − ξ
;
(2) 存在两个不同的点
η , ζ ∈ ( 0 , 1 ) \eta ,\zeta \in(0,1) η , ζ ∈ ( 0 , 1 )
,使得
f ′ ( η ) f ′ ( ζ ) = 1 f'(\eta)f'(\zeta) = 1 f ′ ( η ) f ′ ( ζ ) = 1
.
【解析】 (1) 令
g ( x ) = f ( x ) + x − 1 g(x) = f(x) + x - 1 g ( x ) = f ( x ) + x − 1
。由于
f ( x ) f(x) f ( x )
在
[ 0 , 1 ] [0,1] [ 0 , 1 ]
上连续,故
g ( x ) g(x) g ( x )
在
[ 0 , 1 ] [0,1] [ 0 , 1 ]
上连续。计算得
g ( 0 ) = f ( 0 ) + 0 − 1 = − 1 < 0 g(0) = f(0) + 0 - 1 = -1 < 0 g ( 0 ) = f ( 0 ) + 0 − 1 = − 1 < 0
,
g ( 1 ) = f ( 1 ) + 1 − 1 = 1 > 0 g(1) = f(1) + 1 - 1 = 1 > 0 g ( 1 ) = f ( 1 ) + 1 − 1 = 1 > 0
。由介值定理,存在
ξ ∈ ( 0 , 1 ) \xi \in (0,1) ξ ∈ ( 0 , 1 )
使得
g ( ξ ) = 0 g(\xi) = 0 g ( ξ ) = 0
,即
f ( ξ ) + ξ − 1 = 0 f(\xi) + \xi - 1 = 0 f ( ξ ) + ξ − 1 = 0
,所以
f ( ξ ) = 1 − ξ f(\xi) = 1 - \xi f ( ξ ) = 1 − ξ
。
(2) 由 (1) 知存在
ξ ∈ ( 0 , 1 ) \xi \in (0,1) ξ ∈ ( 0 , 1 )
满足
f ( ξ ) = 1 − ξ f(\xi) = 1 - \xi f ( ξ ) = 1 − ξ
。在区间
[ 0 , ξ ] [0,\xi] [ 0 , ξ ]
上应用拉格朗日中值定理,存在
η ∈ ( 0 , ξ ) \eta \in (0,\xi) η ∈ ( 0 , ξ )
使得
f ′ ( η ) = f ( ξ ) − f ( 0 ) ξ − 0 = 1 − ξ ξ . f'(\eta) = \frac{f(\xi) - f(0)}{\xi - 0} = \frac{1 - \xi}{\xi}. f ′ ( η ) = ξ − 0 f ( ξ ) − f ( 0 ) = ξ 1 − ξ . 在区间
[ ξ , 1 ] [\xi,1] [ ξ , 1 ]
上应用拉格朗日中值定理,存在
ζ ∈ ( ξ , 1 ) \zeta \in (\xi,1) ζ ∈ ( ξ , 1 )
使得
f ′ ( ζ ) = f ( 1 ) − f ( ξ ) 1 − ξ = 1 − ( 1 − ξ ) 1 − ξ = ξ 1 − ξ . f'(\zeta) = \frac{f(1) - f(\xi)}{1 - \xi} = \frac{1 - (1 - \xi)}{1 - \xi} = \frac{\xi}{1 - \xi}. f ′ ( ζ ) = 1 − ξ f ( 1 ) − f ( ξ ) = 1 − ξ 1 − ( 1 − ξ ) = 1 − ξ ξ . 于是,
f ′ ( η ) f ′ ( ζ ) = 1 − ξ ξ ⋅ ξ 1 − ξ = 1. f'(\eta) f'(\zeta) = \frac{1 - \xi}{\xi} \cdot \frac{\xi}{1 - \xi} = 1. f ′ ( η ) f ′ ( ζ ) = ξ 1 − ξ ⋅ 1 − ξ ξ = 1. 由于
η ∈ ( 0 , ξ ) \eta \in (0,\xi) η ∈ ( 0 , ξ )
和
ζ ∈ ( ξ , 1 ) \zeta \in (\xi,1) ζ ∈ ( ξ , 1 )
,故
η \eta η
和
ζ \zeta ζ
是两个不同的点。
19 (本题满分 12 分)
设函数
ϕ ( y ) \phi (y) ϕ ( y )
具有连续导数,在围绕原点的任意分段光滑简单闭曲线
L L L
上,
曲线积分
∮ L ϕ ( y ) d x + 2 x y d y 2 x 2 + y 4 \oint_L \frac{\phi(y)\dx + 2xy\dy}{2x^2 + y^4} ∮ L 2 x 2 + y 4 ϕ ( y ) d x + 2 x y d y
的值恒为同一常数.
(1) 证明:对右半平面
x > 0 x > 0 x > 0
内的任意分段光滑简单闭曲线
C C C
,有
∮ C ϕ ( y ) d x + 2 x y d y 2 x 2 + y 4 = 0. \oint_C \frac{\phi(y)\dx + 2xy\dy}{2x^2 + y^4} = 0. ∮ C 2 x 2 + y 4 ϕ ( y ) d x + 2 x y d y = 0. (2) 求函数
ϕ ( y ) \phi (y) ϕ ( y )
的表达式.
【答案】 (1) 对于右半平面
x > 0 x > 0 x > 0
内的任意分段光滑简单闭曲线
C C C
,有
∮ C ϕ ( y ) d x + 2 x y d y 2 x 2 + y 4 = 0 \oint_C \frac{\phi(y)\dx + 2xy\dy}{2x^2 + y^4} = 0 ∮ C 2 x 2 + y 4 ϕ ( y ) d x + 2 x y d y = 0
。 (2)
ϕ ( y ) = − y 2 \phi(y) = -y^2 ϕ ( y ) = − y 2
。
【解析】 (1) 由于在围绕原点的任意分段光滑简单闭曲线
L L L
上,曲线积分
∮ L ϕ ( y ) d x + 2 x y d y 2 x 2 + y 4 \oint_L \frac{\phi(y)\dx + 2xy\dy}{2x^2 + y^4} ∮ L 2 x 2 + y 4 ϕ ( y ) d x + 2 x y d y
的值恒为同一常数,考虑右半平面
x > 0 x > 0 x > 0
内的任意分段光滑简单闭曲线
C C C
。因为
C C C
不包含原点,且被积函数在
x > 0 x > 0 x > 0
内具有连续偏导数(分母
2 x 2 + y 4 > 0 2x^2 + y^4 > 0 2 x 2 + y 4 > 0
),所以
C C C
可以在
x > 0 x > 0 x > 0
内连续收缩为一点。在收缩过程中,曲线积分值保持不变,当收缩为一点时,曲线积分为零,因此沿
C C C
的曲线积分为零。
(2) 由条件知,曲线积分在围绕原点的闭曲线上为常数,这意味着被积函数在原点外满足
∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} ∂ y ∂ P = ∂ x ∂ Q
,其中
P = ϕ ( y ) 2 x 2 + y 4 P = \frac{\phi(y)}{2x^2 + y^4} P = 2 x 2 + y 4 ϕ ( y )
,
Q = 2 x y 2 x 2 + y 4 Q = \frac{2xy}{2x^2 + y^4} Q = 2 x 2 + y 4 2 x y
。 计算偏导数:
∂ Q ∂ x = ∂ ∂ x ( 2 x y 2 x 2 + y 4 ) = 2 y ( 2 x 2 + y 4 ) − 2 x y ⋅ 4 x ( 2 x 2 + y 4 ) 2 = 4 x 2 y + 2 y 5 − 8 x 2 y ( 2 x 2 + y 4 ) 2 = 2 y 5 − 4 x 2 y ( 2 x 2 + y 4 ) 2 , \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left( \frac{2xy}{2x^2 + y^4} \right) = \frac{2y(2x^2 + y^4) - 2xy \cdot 4x}{(2x^2 + y^4)^2} = \frac{4x^2 y + 2y^5 - 8x^2 y}{(2x^2 + y^4)^2} = \frac{2y^5 - 4x^2 y}{(2x^2 + y^4)^2}, ∂ x ∂ Q = ∂ x ∂ ( 2 x 2 + y 4 2 x y ) = ( 2 x 2 + y 4 ) 2 2 y ( 2 x 2 + y 4 ) − 2 x y ⋅ 4 x = ( 2 x 2 + y 4 ) 2 4 x 2 y + 2 y 5 − 8 x 2 y = ( 2 x 2 + y 4 ) 2 2 y 5 − 4 x 2 y ,
∂ P ∂ y = ∂ ∂ y ( ϕ ( y ) 2 x 2 + y 4 ) = ϕ ′ ( y ) ( 2 x 2 + y 4 ) − ϕ ( y ) ⋅ 4 y 3 ( 2 x 2 + y 4 ) 2 . \frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\phi(y)}{2x^2 + y^4} \right) = \frac{\phi'(y)(2x^2 + y^4) - \phi(y) \cdot 4y^3}{(2x^2 + y^4)^2}. ∂ y ∂ P = ∂ y ∂ ( 2 x 2 + y 4 ϕ ( y ) ) = ( 2 x 2 + y 4 ) 2 ϕ ′ ( y ) ( 2 x 2 + y 4 ) − ϕ ( y ) ⋅ 4 y 3 . 令两者相等:
ϕ ′ ( y ) ( 2 x 2 + y 4 ) − 4 y 3 ϕ ( y ) ( 2 x 2 + y 4 ) 2 = 2 y 5 − 4 x 2 y ( 2 x 2 + y 4 ) 2 , \frac{\phi'(y)(2x^2 + y^4) - 4y^3 \phi(y)}{(2x^2 + y^4)^2} = \frac{2y^5 - 4x^2 y}{(2x^2 + y^4)^2}, ( 2 x 2 + y 4 ) 2 ϕ ′ ( y ) ( 2 x 2 + y 4 ) − 4 y 3 ϕ ( y ) = ( 2 x 2 + y 4 ) 2 2 y 5 − 4 x 2 y , 即
ϕ ′ ( y ) ( 2 x 2 + y 4 ) − 4 y 3 ϕ ( y ) = 2 y 5 − 4 x 2 y . \phi'(y)(2x^2 + y^4) - 4y^3 \phi(y) = 2y^5 - 4x^2 y. ϕ ′ ( y ) ( 2 x 2 + y 4 ) − 4 y 3 ϕ ( y ) = 2 y 5 − 4 x 2 y . 整理得:
2 x 2 ϕ ′ ( y ) + ϕ ′ ( y ) y 4 − 4 y 3 ϕ ( y ) = − 4 x 2 y + 2 y 5 . 2x^2 \phi'(y) + \phi'(y) y^4 - 4y^3 \phi(y) = -4x^2 y + 2y^5. 2 x 2 ϕ ′ ( y ) + ϕ ′ ( y ) y 4 − 4 y 3 ϕ ( y ) = − 4 x 2 y + 2 y 5 . 比较
x 2 x^2 x 2
的系数:
2 ϕ ′ ( y ) = − 4 y ⇒ ϕ ′ ( y ) = − 2 y . 2 \phi'(y) = -4y \quad \Rightarrow \quad \phi'(y) = -2y. 2 ϕ ′ ( y ) = − 4 y ⇒ ϕ ′ ( y ) = − 2 y . 代入上式:
( − 2 y ) ⋅ y 4 − 4 y 3 ϕ ( y ) = 2 y 5 ⇒ − 2 y 5 − 4 y 3 ϕ ( y ) = 2 y 5 ⇒ − 4 y 3 ϕ ( y ) = 4 y 5 ⇒ ϕ ( y ) = − y 2 . (-2y) \cdot y^4 - 4y^3 \phi(y) = 2y^5 \quad \Rightarrow \quad -2y^5 - 4y^3 \phi(y) = 2y^5 \quad \Rightarrow \quad -4y^3 \phi(y) = 4y^5 \quad \Rightarrow \quad \phi(y) = -y^2. ( − 2 y ) ⋅ y 4 − 4 y 3 ϕ ( y ) = 2 y 5 ⇒ − 2 y 5 − 4 y 3 ϕ ( y ) = 2 y 5 ⇒ − 4 y 3 ϕ ( y ) = 4 y 5 ⇒ ϕ ( y ) = − y 2 . 因此,函数
ϕ ( y ) = − y 2 \phi(y) = -y^2 ϕ ( y ) = − y 2
。
20 (本题满分 9 分)
已知二次型
f ( x 1 , x 2 , x 3 ) = ( 1 − a ) x 1 2 + ( 1 − a ) x 2 2 + 2 x 3 2 + 2 ( 1 + a ) x 1 x 2 f(x_1,x_2,x_3) = (1 - a)x_1^2 + (1 - a)x_2^2 + 2x_3^2 + 2(1 + a) x_1x_2 f ( x 1 , x 2 , x 3 ) = ( 1 − a ) x 1 2 + ( 1 − a ) x 2 2 + 2 x 3 2 + 2 ( 1 + a ) x 1 x 2
的秩为
2 2 2
.
(1) 求
a a a
的值;
(2) 求正交变换
x = Q y x = Qy x = Q y
,把
f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f ( x 1 , x 2 , x 3 )
化成标准形;
(3) 求方程
f ( x 1 , x 2 , x 3 ) = 0 f(x_1,x_2,x_3)=0 f ( x 1 , x 2 , x 3 ) = 0
的解.
【答案】
(1)
a = 0 a = 0 a = 0 (2) 正交变换
x = Q y x = Qy x = Q y
中,
Q = ( 1 2 1 2 0 − 1 2 1 2 0 0 0 1 ) Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} Q = 2 1 − 2 1 0 2 1 2 1 0 0 0 1
,标准形为
f = 2 y 2 2 + 2 y 3 2 f = 2y_2^2 + 2y_3^2 f = 2 y 2 2 + 2 y 3 2 (3) 方程
f ( x 1 , x 2 , x 3 ) = 0 f(x_1, x_2, x_3) = 0 f ( x 1 , x 2 , x 3 ) = 0
的解为
x 1 = t , x 2 = − t , x 3 = 0 x_1 = t, x_2 = -t, x_3 = 0 x 1 = t , x 2 = − t , x 3 = 0
,其中
t t t
为任意实数。
【解析】
(1) 二次型
f ( x 1 , x 2 , x 3 ) f(x_1, x_2, x_3) f ( x 1 , x 2 , x 3 )
的矩阵为
A = ( 1 − a 1 + a 0 1 + a 1 − a 0 0 0 2 ) A = \begin{pmatrix} 1 - a & 1 + a & 0 \\ 1 + a & 1 - a & 0 \\ 0 & 0 & 2 \end{pmatrix} A = 1 − a 1 + a 0 1 + a 1 − a 0 0 0 2
。秩为 2 意味着
det ( A ) = 0 \det(A) = 0 det ( A ) = 0
。计算行列式:
det ( A ) = det ( 1 − a 1 + a 1 + a 1 − a ) × 2 = [ ( 1 − a ) 2 − ( 1 + a ) 2 ] × 2 = [ − 4 a ] × 2 = − 8 a \det(A) = \det \begin{pmatrix} 1 - a & 1 + a \\ 1 + a & 1 - a \end{pmatrix} \times 2 = [(1 - a)^2 - (1 + a)^2] \times 2 = [-4a] \times 2 = -8a det ( A ) = det ( 1 − a 1 + a 1 + a 1 − a ) × 2 = [( 1 − a ) 2 − ( 1 + a ) 2 ] × 2 = [ − 4 a ] × 2 = − 8 a 设
− 8 a = 0 -8a = 0 − 8 a = 0
,得
a = 0 a = 0 a = 0
。当
a = 0 a = 0 a = 0
时,矩阵
A = ( 1 1 0 1 1 0 0 0 2 ) A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A = 1 1 0 1 1 0 0 0 2
,秩为 2,符合条件。
(2) 当
a = 0 a = 0 a = 0
时,二次型为
f ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + 2 x 3 2 + 2 x 1 x 2 f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1 x_2 f ( x 1 , x 2 , x 3 ) = x 1 2 + x 2 2 + 2 x 3 2 + 2 x 1 x 2
,矩阵
A = ( 1 1 0 1 1 0 0 0 2 ) A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} A = 1 1 0 1 1 0 0 0 2
。求特征值和特征向量: 特征多项式为
det ( A − λ I ) = det ( 1 − λ 1 0 1 1 − λ 0 0 0 2 − λ ) = ( λ 2 − 2 λ ) ( 2 − λ ) = − λ ( λ − 2 ) 2 \det(A - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 1 & 0 \\ 1 & 1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = (\lambda^2 - 2\lambda)(2 - \lambda) = -\lambda(\lambda - 2)^2 det ( A − λ I ) = det 1 − λ 1 0 1 1 − λ 0 0 0 2 − λ = ( λ 2 − 2 λ ) ( 2 − λ ) = − λ ( λ − 2 ) 2
,特征值为
λ = 0 \lambda = 0 λ = 0
(单根)和
λ = 2 \lambda = 2 λ = 2
(二重根)。 对于
λ = 0 \lambda = 0 λ = 0
,解
( A − 0 I ) v = 0 (A - 0I)v = 0 ( A − 0 I ) v = 0
得特征向量
( 1 , − 1 , 0 ) T (1, -1, 0)^T ( 1 , − 1 , 0 ) T
,单位化得
u 1 = ( 1 2 , − 1 2 , 0 ) T u_1 = \left( \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right)^T u 1 = ( 2 1 , − 2 1 , 0 ) T
。 对于
λ = 2 \lambda = 2 λ = 2
,解
( A − 2 I ) v = 0 (A - 2I)v = 0 ( A − 2 I ) v = 0
得特征向量
( 1 , 1 , 0 ) T (1, 1, 0)^T ( 1 , 1 , 0 ) T
和
( 0 , 0 , 1 ) T (0, 0, 1)^T ( 0 , 0 , 1 ) T
,单位化得
u 2 = ( 1 2 , 1 2 , 0 ) T u_2 = \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)^T u 2 = ( 2 1 , 2 1 , 0 ) T
和
u 3 = ( 0 , 0 , 1 ) T u_3 = (0, 0, 1)^T u 3 = ( 0 , 0 , 1 ) T
。 正交矩阵
Q = ( 1 2 1 2 0 − 1 2 1 2 0 0 0 1 ) Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} Q = 2 1 − 2 1 0 2 1 2 1 0 0 0 1
,标准形为
f = 0 ⋅ y 1 2 + 2 ⋅ y 2 2 + 2 ⋅ y 3 2 = 2 y 2 2 + 2 y 3 2 f = 0 \cdot y_1^2 + 2 \cdot y_2^2 + 2 \cdot y_3^2 = 2y_2^2 + 2y_3^2 f = 0 ⋅ y 1 2 + 2 ⋅ y 2 2 + 2 ⋅ y 3 2 = 2 y 2 2 + 2 y 3 2
。
(3) 由标准形
f = 2 y 2 2 + 2 y 3 2 = 0 f = 2y_2^2 + 2y_3^2 = 0 f = 2 y 2 2 + 2 y 3 2 = 0
得
y 2 = 0 y_2 = 0 y 2 = 0
,
y 3 = 0 y_3 = 0 y 3 = 0
,
y 1 y_1 y 1
任意。代入正交变换
x = Q y x = Qy x = Q y
:
x = Q ( y 1 0 0 ) = y 1 ( 1 2 − 1 2 0 ) x = Q \begin{pmatrix} y_1 \\ 0 \\ 0 \end{pmatrix} = y_1 \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} x = Q y 1 0 0 = y 1 2 1 − 2 1 0 令
t = y 1 2 t = \frac{y_1}{\sqrt{2}} t = 2 y 1
,则解为
x 1 = t x_1 = t x 1 = t
,
x 2 = − t x_2 = -t x 2 = − t
,
x 3 = 0 x_3 = 0 x 3 = 0
,其中
t t t
为任意实数。
21 (本题满分 9 分)
已知
3 3 3
阶矩阵
A A A
的第一行是
( a , b , c ) (a,b,c) ( a , b , c )
,
a , b , c a,b,c a , b , c
不全为零,矩阵
B = ( 1 2 3 2 4 6 3 6 k ) B = \begin{pmatrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & k
\end{pmatrix} B = 1 2 3 2 4 6 3 6 k
(
k k k
为常数),且
A B = 0 AB = 0 A B = 0
,求线性方程组
A x = 0 Ax = 0 A x = 0
的通解.
【解析】
由
A B = 0 AB = 0 A B = 0
知,
B B B
的每一列均为
A x = 0 Ax = 0 A x = 0
的解,且
r ( A ) + r ( B ) ≤ 3 r(A) + r(B) \leq 3 r ( A ) + r ( B ) ≤ 3
。
(Ⅰ) 若
k ≠ 9 k \neq 9 k = 9
,则
r ( B ) = 2 r(B) = 2 r ( B ) = 2
,于是
r ( A ) = 1 r(A) = 1 r ( A ) = 1
。记
B = ( β 1 , β 2 , β 3 ) B = (\beta_1, \beta_2, \beta_3) B = ( β 1 , β 2 , β 3 )
,则
β 1 , β 3 \beta_1, \beta_3 β 1 , β 3
是方程组的解且线性无关,可作为其基础解系,故
A x = 0 Ax = 0 A x = 0
的通解为:
x = k 1 ( 1 2 3 ) + k 2 ( 3 6 k ) , k 1 , k 2 为任意常数。
x = k_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + k_2 \begin{pmatrix} 3 \\ 6 \\ k \end{pmatrix}, \quad k_1, k_2 \text{为任意常数。}
x = k 1 1 2 3 + k 2 3 6 k , k 1 , k 2 为任意常数。 (Ⅱ) 若
k = 9 k = 9 k = 9
,则
r ( B ) = 1 r(B) = 1 r ( B ) = 1
,于是
r ( A ) = 1 r(A) = 1 r ( A ) = 1
或
r ( A ) = 2 r(A) = 2 r ( A ) = 2
。
(i) 若
r ( A ) = 2 r(A) = 2 r ( A ) = 2
,则方程组的基础解系由一个线性无关的解组成,
β 1 \beta_1 β 1
是方程组
A x = 0 Ax = 0 A x = 0
的基础解系,则
A x = 0 Ax = 0 A x = 0
的通解为:
x = k 1 ( 1 2 3 ) , k 1 为任意常数。
x = k_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad k_1 \text{为任意常数。}
x = k 1 1 2 3 , k 1 为任意常数。 (ii) 若
r ( A ) = 1 r(A) = 1 r ( A ) = 1
,则
A A A
的三个行向量成比例,因第 1 行元素
( a , b , c ) (a, b, c) ( a , b , c )
不全为零,不妨设
a ≠ 0 a \neq 0 a = 0
,则
A x = 0 Ax = 0 A x = 0
的同解方程组为:
a x 1 + b x 2 + c x 3 = 0 ax_1 + bx_2 + cx_3 = 0 a x 1 + b x 2 + c x 3 = 0
,系数矩阵的秩为 1,故基础解系由 2 个线性无关解向量组成,选
x 2 , x 3 x_2, x_3 x 2 , x 3
为自由未知量,分别取
x 2 = 1 , x 3 = 0 x_2 = 1, x_3 = 0 x 2 = 1 , x 3 = 0
或
x 2 = 0 , x 3 = 1 x_2 = 0, x_3 = 1 x 2 = 0 , x 3 = 1
,方程组的基础解系为
ξ 1 = ( − b a 1 0 ) , ξ 2 = ( − c a 0 1 ) ,
\xi_1 = \begin{pmatrix} -\frac{b}{a} \\ 1 \\ 0 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} -\frac{c}{a} \\ 0 \\ 1 \end{pmatrix},
ξ 1 = − a b 1 0 , ξ 2 = − a c 0 1 , 则其通解为
x = k 1 ξ 1 + k 2 ξ 2 x = k_1 \xi_1 + k_2 \xi_2 x = k 1 ξ 1 + k 2 ξ 2
,
k 1 , k 2 k_1, k_2 k 1 , k 2
为任意常数。
22 (本题满分 9 分)
设二维随机变量
( X , Y ) (X,Y) ( X , Y )
的概率密度为
f ( x , y ) = { 1 , 0 < x < 1 , 0 < y < 2 x , 0 , 其他 . f(x,y) = \begin{cases}
1, & 0 < x < 1,0 < y < 2x, \\
0, & \text{其他}.
\end{cases} f ( x , y ) = { 1 , 0 , 0 < x < 1 , 0 < y < 2 x , 其他 .
求:
(1)
( X , Y ) (X,Y) ( X , Y )
的边缘概率密度
f X ( x ) , f Y ( y ) f_X(x),f_Y(y) f X ( x ) , f Y ( y )
;
(2)
Z = 2 X − Y Z = 2X - Y Z = 2 X − Y
的概率密度
f Z ( z ) f_Z(z) f Z ( z )
.
【答案】 (1)
f X ( x ) = { 2 x , 0 < x < 1 , 0 , 其他 f_X(x) = \begin{cases}
2x, & 0 < x < 1, \\
0, & \text{其他}
\end{cases} f X ( x ) = { 2 x , 0 , 0 < x < 1 , 其他 f Y ( y ) = { 1 − y 2 , 0 < y < 2 , 0 , 其他 f_Y(y) = \begin{cases}
1 - \frac{y}{2}, & 0 < y < 2, \\
0, & \text{其他}
\end{cases} f Y ( y ) = { 1 − 2 y , 0 , 0 < y < 2 , 其他
(2)
f Z ( z ) = { 1 − z 2 , 0 < z < 2 , 0 , 其他 f_Z(z) = \begin{cases}
1 - \frac{z}{2}, & 0 < z < 2, \\
0, & \text{其他}
\end{cases} f Z ( z ) = { 1 − 2 z , 0 , 0 < z < 2 , 其他
【解析】
(1) 边缘概率密度计算
对于
f X ( x ) f_X(x) f X ( x )
,通过对
y y y
积分得到
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y .
f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy.
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y . 当
0 < x < 1 0 < x < 1 0 < x < 1
时,
y y y
的范围为
0 < y < 2 x 0 < y < 2x 0 < y < 2 x
,于是
f X ( x ) = ∫ 0 2 x 1 d y = 2 x .
f_X(x) = \int_{0}^{2x} 1 \, dy = 2x.
f X ( x ) = ∫ 0 2 x 1 d y = 2 x . 其他情况下,
f X ( x ) = 0 f_X(x) = 0 f X ( x ) = 0
。
对于
f Y ( y ) f_Y(y) f Y ( y )
,通过对
x x x
积分得到
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x .
f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx.
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x . 当
0 < y < 2 0 < y < 2 0 < y < 2
时,
x x x
的范围为
y 2 < x < 1 \frac{y}{2} < x < 1 2 y < x < 1
,因此
f Y ( y ) = ∫ y / 2 1 1 d x = 1 − y 2 .
f_Y(y) = \int_{y/2}^{1} 1 \, dx = 1 - \frac{y}{2}.
f Y ( y ) = ∫ y /2 1 1 d x = 1 − 2 y . 其他情况下,
f Y ( y ) = 0 f_Y(y) = 0 f Y ( y ) = 0
。
(2)
Z = 2 X − Y Z = 2X - Y Z = 2 X − Y
的概率密度计算
采用累积分布函数(CDF)方法。首先计算
F Z ( z ) = P ( Z ≤ z ) = P ( 2 X − Y ≤ z ) .
F_Z(z) = P(Z \leq z) = P(2X - Y \leq z).
F Z ( z ) = P ( Z ≤ z ) = P ( 2 X − Y ≤ z ) . 由于
f ( x , y ) f(x,y) f ( x , y )
在区域
0 < x < 1 , 0 < y < 2 x 0 < x < 1, \; 0 < y < 2x 0 < x < 1 , 0 < y < 2 x
上为 1,其余为 0,可得:
当
z < 0 z < 0 z < 0
时,
F Z ( z ) = 0 F_Z(z) = 0 F Z ( z ) = 0
; 当
z > 2 z > 2 z > 2
时,
F Z ( z ) = 1 F_Z(z) = 1 F Z ( z ) = 1
。 对于
0 < z < 2 0 < z < 2 0 < z < 2
,计算概率
P ( 2 X − Y ≤ z ) P(2X - Y \leq z) P ( 2 X − Y ≤ z )
在区域
0 < x < 1 , 0 < y < 2 x , y ≥ 2 x − z
0 < x < 1, \quad 0 < y < 2x, \quad y \geq 2x - z
0 < x < 1 , 0 < y < 2 x , y ≥ 2 x − z 上的积分。将
x x x
分为两个区间:
当
x ∈ [ 0 , z / 2 ] x \in [0, z/2] x ∈ [ 0 , z /2 ] 此时
y y y
从
0 0 0
到
2 x 2x 2 x
,积分值为
∫ 0 z / 2 ∫ 0 2 x 1 d y d x = ∫ 0 z / 2 2 x d x = z 2 4 .
\int_{0}^{z/2} \int_{0}^{2x} 1 \, dy \, dx = \int_{0}^{z/2} 2x \, dx = \frac{z^2}{4}.
∫ 0 z /2 ∫ 0 2 x 1 d y d x = ∫ 0 z /2 2 x d x = 4 z 2 . 当
x ∈ [ z / 2 , 1 ] x \in [z/2, 1] x ∈ [ z /2 , 1 ] 此时
y y y
从
2 x − z 2x - z 2 x − z
到
2 x 2x 2 x
,积分值为
∫ z / 2 1 ∫ 2 x − z 2 x 1 d y d x = ∫ z / 2 1 z d x = z ( 1 − z 2 ) = z − z 2 2 .
\int_{z/2}^{1} \int_{2x - z}^{2x} 1 \, dy \, dx = \int_{z/2}^{1} z \, dx = z\left(1 - \frac{z}{2}\right) = z - \frac{z^2}{2}.
∫ z /2 1 ∫ 2 x − z 2 x 1 d y d x = ∫ z /2 1 z d x = z ( 1 − 2 z ) = z − 2 z 2 . 因此,
F Z ( z ) = z 2 4 + ( z − z 2 2 ) = z − z 2 4 .
F_Z(z) = \frac{z^2}{4} + \left(z - \frac{z^2}{2}\right) = z - \frac{z^2}{4}.
F Z ( z ) = 4 z 2 + ( z − 2 z 2 ) = z − 4 z 2 . 对
F Z ( z ) F_Z(z) F Z ( z )
求导,得到
f Z ( z ) = d d z ( z − z 2 4 ) = 1 − z 2 , 0 < z < 2 ,
f_Z(z) = \frac{d}{dz} \left(z - \frac{z^2}{4}\right) = 1 - \frac{z}{2}, \quad 0 < z < 2,
f Z ( z ) = d z d ( z − 4 z 2 ) = 1 − 2 z , 0 < z < 2 , 其他情况下
f Z ( z ) = 0 f_Z(z) = 0 f Z ( z ) = 0
。
验证:
∫ 0 2 ( 1 − z 2 ) d z = 1 ,
\int_{0}^{2} \left(1 - \frac{z}{2}\right) dz = 1,
∫ 0 2 ( 1 − 2 z ) d z = 1 , 满足概率密度函数的性质。
23 (本题满分 9 分)
设
X 1 , X 2 , ⋯ , X n ( n > 2 ) X_1,X_2, \cdots ,X_n(n > 2) X 1 , X 2 , ⋯ , X n ( n > 2 )
为来自总体
N ( 0 , 1 ) N(0,1) N ( 0 , 1 )
的简单随机样本,
X ‾ \overline{X} X
为样本均值,
记
Y i = X i − X ‾ Y_i = X_i - \overline{X} Y i = X i − X
,
i = 1 , 2 , ⋯ , n i = 1,2, \cdots ,n i = 1 , 2 , ⋯ , n
.求:
(1)
Y i Y_i Y i
的方差
D Y i DY_i D Y i
,
i = 1 , 2 , ⋯ , n i = 1,2, \cdots ,n i = 1 , 2 , ⋯ , n
;
(2)
Y 1 Y_1 Y 1
与
Y n Y_n Y n
的协方差
Cov ( Y 1 , Y n ) \Cov (Y_1,Y_n) Cov ( Y 1 , Y n )
.
【答案】 (1)
D Y i = 1 − 1 n DY_i = 1 - \frac{1}{n} D Y i = 1 − n 1 (2)
Cov ( Y 1 , Y n ) = − 1 n \Cov(Y_1, Y_n) = -\frac{1}{n} Cov ( Y 1 , Y n ) = − n 1
【解析】 (1) 由于
X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X 1 , X 2 , ⋯ , X n
独立同分布于
N ( 0 , 1 ) N(0,1) N ( 0 , 1 )
,有
E X i = 0 EX_i = 0 E X i = 0
,
D X i = 1 DX_i = 1 D X i = 1
。样本均值
X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i X = n 1 ∑ i = 1 n X i
,则
E X ‾ = 0 E\overline{X} = 0 E X = 0
,
D X ‾ = 1 n D\overline{X} = \frac{1}{n} D X = n 1
。 计算
Y i = X i − X ‾ Y_i = X_i - \overline{X} Y i = X i − X
的方差:
D Y i = D ( X i − X ‾ ) = D X i + D X ‾ − 2 Cov ( X i , X ‾ ) DY_i = D(X_i - \overline{X}) = DX_i + D\overline{X} - 2\Cov(X_i, \overline{X}) D Y i = D ( X i − X ) = D X i + D X − 2 Cov ( X i , X ) 其中
Cov ( X i , X ‾ ) = Cov ( X i , 1 n ∑ j = 1 n X j ) = 1 n ∑ j = 1 n Cov ( X i , X j ) \Cov(X_i, \overline{X}) = \Cov\left(X_i, \frac{1}{n} \sum_{j=1}^n X_j\right) = \frac{1}{n} \sum_{j=1}^n \Cov(X_i, X_j) Cov ( X i , X ) = Cov ( X i , n 1 ∑ j = 1 n X j ) = n 1 ∑ j = 1 n Cov ( X i , X j )
。 由于
X i X_i X i
独立,当
i = j i = j i = j
时
Cov ( X i , X j ) = D X i = 1 \Cov(X_i, X_j) = DX_i = 1 Cov ( X i , X j ) = D X i = 1
,当
i ≠ j i \neq j i = j
时
Cov ( X i , X j ) = 0 \Cov(X_i, X_j) = 0 Cov ( X i , X j ) = 0
,故
Cov ( X i , X ‾ ) = 1 n \Cov(X_i, \overline{X}) = \frac{1}{n} Cov ( X i , X ) = n 1
。 代入得:
D Y i = 1 + 1 n − 2 ⋅ 1 n = 1 − 1 n DY_i = 1 + \frac{1}{n} - 2 \cdot \frac{1}{n} = 1 - \frac{1}{n} D Y i = 1 + n 1 − 2 ⋅ n 1 = 1 − n 1 因此,
D Y i = 1 − 1 n DY_i = 1 - \frac{1}{n} D Y i = 1 − n 1
。
(2) 计算
Y 1 Y_1 Y 1
与
Y n Y_n Y n
的协方差:
Y 1 = X 1 − X ‾ , Y n = X n − X ‾ Y_1 = X_1 - \overline{X}, \quad Y_n = X_n - \overline{X} Y 1 = X 1 − X , Y n = X n − X
Cov ( Y 1 , Y n ) = Cov ( X 1 − X ‾ , X n − X ‾ ) = Cov ( X 1 , X n ) − Cov ( X 1 , X ‾ ) − Cov ( X ‾ , X n ) + Cov ( X ‾ , X ‾ ) \Cov(Y_1, Y_n) = \Cov(X_1 - \overline{X}, X_n - \overline{X}) = \Cov(X_1, X_n) - \Cov(X_1, \overline{X}) - \Cov(\overline{X}, X_n) + \Cov(\overline{X}, \overline{X}) Cov ( Y 1 , Y n ) = Cov ( X 1 − X , X n − X ) = Cov ( X 1 , X n ) − Cov ( X 1 , X ) − Cov ( X , X n ) + Cov ( X , X ) 由于
X 1 X_1 X 1
与
X n X_n X n
独立,
Cov ( X 1 , X n ) = 0 \Cov(X_1, X_n) = 0 Cov ( X 1 , X n ) = 0
。 已知
Cov ( X 1 , X ‾ ) = 1 n \Cov(X_1, \overline{X}) = \frac{1}{n} Cov ( X 1 , X ) = n 1
,
Cov ( X ‾ , X n ) = 1 n \Cov(\overline{X}, X_n) = \frac{1}{n} Cov ( X , X n ) = n 1
,
Cov ( X ‾ , X ‾ ) = D X ‾ = 1 n \Cov(\overline{X}, \overline{X}) = D\overline{X} = \frac{1}{n} Cov ( X , X ) = D X = n 1
。 代入得:
Cov ( Y 1 , Y n ) = 0 − 1 n − 1 n + 1 n = − 1 n \Cov(Y_1, Y_n) = 0 - \frac{1}{n} - \frac{1}{n} + \frac{1}{n} = -\frac{1}{n} Cov ( Y 1 , Y n ) = 0 − n 1 − n 1 + n 1 = − n 1 因此,
Cov ( Y 1 , Y n ) = − 1 n \Cov(Y_1, Y_n) = -\frac{1}{n} Cov ( Y 1 , Y n ) = − n 1
。